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Non-growing season carbon emissions in a
northern peatland are projected to increase under
global warming

Arash Rafat!?, Fereidoun Rezanezhad® 2%, William L. Quinton3, Elyn R. Humphreys4, Kara Webster®> &
Philippe Van Cappellen?

Peatlands are important ecosystems that store approximately one third of terrestrial organic
carbon. Non-growing season carbon fluxes significantly contribute to annual carbon budgets
in peatlands, yet their response to climate change is poorly understood. Here, we investigate
the governing environmental variables of non-growing season carbon emissions in a northern
peatland. We develop a support-vector regression model using a continuous 13-year dataset
of eddy covariance flux measurements from the Mer Blue Bog, Canada. We determine that
only seven variables were needed to reproduce carbon fluxes, which were most sensitive to
net radiation above the canopy, soil temperature, wind speed and soil moisture. We find that
changes in soil temperature and photosynthesis drove changes in net carbon flux. Assessing
net ecosystem carbon exchange under three representative concentration pathways, we
project a 103% increase in peatland carbon loss by 2100 under a high emissions scenario. We
suggest that peatland carbon losses constitute a strong positive climate feedback loop.
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hile peatlands are estimated to cover only 3% of the
Wcontinentsl, they store approximately 30% of land-

based organic carbon (C) (300-450 Pg C)2->. Northern
peatlands are of particular interest because high latitude regions
are warming at greater rates than the global average®~10, Fur-
thermore, the greatest warming in cold regions, including
northern peatlands, is occurring during the nongrowing season
(NGS)!1-12, Many previous studies have focused on peatland C
dynamics during the growing season, given the inherent diffi-
culties of measuring NGS carbon dioxide (CO,) fluxes in remote
cold regions. However, a growing body of literature shows that
net ecosystem CO, exchange (NEE) from various landscapes
during the NGS is nontrivial and may contribute significantly to
annual ecosystem C budgets!2-20, Despite these efforts, there is a
lack of predictive understanding of how NGS CO, emissions
from northern peatlands will change under an evolving and
uncertain 21st-century climate.

Only a few studies have projected future NGS-NEE of peatland
ecosystems under representative climate concentration pathways
(RCPs) for northern regions!?21-23, In part, this reflects an
incomplete understanding of the key drivers of NGS soil
respiration. Previous work, however, shows that soil CO, eftluxes
during the NGS are modulated by the interactions between
numerous environmental parameters, including soil temperature
and moisture!>24-26, snow depth?>27-30, vegetation cover],
availability of labile C substrates, and the soil microbial abun-
dance and community structure32-34,

Deterministic models are traditionally used for understanding
environmental processes. The processes included, and their
model representations, are derived from prior knowledge and
theoretical considerations. The models in turn form the basis for
hypothesis-driven experimentation with, as a possible unintended
consequence, biases the observational data due to the underlying
hypotheses>. As an example of this traditional deterministic
approach, terrestrial ecosystem C cycling has been successfully
simulated using process-based dynamic vegetation models. As an
alternative approach, data-driven (rather than hypothesis-driven)
modeling techniques, including machine- and deep-learning
methods, are increasingly employed to derive quantitative
relationships between environmental variables and ecosystem
functions (e.g., soil respiration) based on patterns in the
measured data.

Machine learning (ML) is the study of statistical models and
algorithms®® and has been extensively applied to the modeling of
carbon fluxes measured at eddy covariance (EC) flux towers from
a variety of ecosystem types®’~40. The applicability of ML to
modeling carbon fluxes was best demonstrated in the recent work
by Tramontana et al.#! who used a large ensemble of ML-based
models in predicting CO,, energy, and radiative fluxes across
various plant-functional types. Similar studies have achieved great
success in modeling CO, fluxes using ML techniques, as shown in
the studies conducted by Cai et al.3¢, Melesse and Hanley3?, and
Xiao et al.#2 who used gradient boosting and random forest,
multilayer artificial neural networks, and regression trees
respectively to predict carbon fluxes measured at EC flux towers
for various applications.

In this study, we train an ML model for NGS-NEE on a 13-year
(1998-2010) continuous record of EC flux measurements at the
Mer Bleue Bog located in Ottawa, Canada. The most important
variables modulating the NGS-NEE at the research site are
determined using a variable selection methodology and a
moment-independent global sensitivity analysis (GSA) method.
In addition, we project the NGS-NEE CO, emission rates over
the remainder of the 21st century by considering how the key
environmental variables will change under a low, moderate, and
high radiative forcing scenario (RCP2.6, RCP4.5, RCP8.5,

respectively). The findings of this study provide novel insights
into NGS CO, emissions from northern peatlands as they tran-
sition into a warmer world, with implications for future climate
policy, evolving northern landscapes, and the associated hydro-
meteorological, snow, and frozen-ground processes.

Results

Model performance and validation. Model performance, both
validation and testing, of predicted NGS-NEE is illustrated in
Fig. 1. Model validation and testing performance metrics varied
slightly with each new training cycle. Averaged over n = 1000
model training cycles, the cross-validation results showed a mean
RMSE =0.09 and mean r?=0.60, implying that the model
explained most of the observed variability of NGS-NEE. Model
testing results further implied good model performance across the
testing data with RMSE = 0.08 and r* = 0.65.

Model dependencies. The effects of each of the seven predictor
variables on the modeled NGS-NEE are shown in the partial
dependence and individual conditional expectation plots of Fig. 2.
In most simulations, the modeled NGS-NEE showed net positive
responses to increases in wind speed, soil moisture content, as
well as air and soil temperatures. Wind direction exhibited little
to no net influence on modeled NGS-NEE and upwelling pho-
tosynthetic photon flux density (PPFD) a slightly negative effect.
By contrast, net radiation above the canopy exhibited a strong
negative effect on the predicted NGS-NEE. This negative control
can be attributed to increased photosynthetic CO, uptake with
increased net radiation.

Sensitivity analysis. The calculated SIs provide further insight
into the relative influence of the seven predictor variables on
NGS-NEE estimates (Fig. 3). The results implied that net radia-
tion above the canopy has the greatest influence on modeled
NGS-NEE with a mean SI of 0.98 (0.98-0.99, 95% confidence
interval). Wind direction was the least sensitive variable, with a
mean SI of 0.08, that is, only slightly larger than that for the
dummy (control) variable, which had a mean SI of 0.03. Soil
temperature exerted a pronounced influence on modeled
NGS-NEE with a mean SI of 0.72, consistent with soil tem-
perature as a major control on subsurface organic C miner-
alization and, hence, production of CO,. Wind speed and soil
moisture content were of moderate to high importance (mean
SIs=0.62 and 0.61, respectively) and a lower influence of
upwelling PPFD. Table 1 summarizes the mean values and ranges
of all the SIs.

Climate change predictions. Under all three emission scenarios,
NGS-NEE CO, fluxes were predicted to increase over the
remainder of the 21st century (Fig. 4). That is, the Mer Bleue Bog
will act as a stronger source of CO, during the NGS, even under
the lowest radiative forcing scenario (i.e., RCP2.6). As also shown
in Fig. 4, the predicted future NGS-NEE trends for the three
climate scenarios diverged most significantly after 2050.

Under the high radiative forcing scenario considered (RCP8.5),
the mean NGS-NEE CO, emission rates at the end of the century
would rise to 0.62pumolm~2 s~! (0.60-0.63; minimum and
maximum values from » = 1000 runs of the model). Compared to
the observed mean NGS-NEE of 0.31 pmolm—2s~! for the
period 1998-2010, NGS-NEE under RCP8.5, therefore, exhibited
roughly a 2-fold increase by 2100 (mean increase of 103%). If the
stringent emission reduction measures and policy shifts are
implemented to limit radiative forcing to 2.6 W m~2 by the year
2100 (RCP2.6), NGS-NEE values at the Mer Bleue Bog site would
only increase by 17% (approximately 6.2 times less than under
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Fig. 1 Model validation and testing performance on predicted nongrowing season net ecosystem exchanges of CO, (NGS-NEE). Circles represent
predicted vs. observed NGS-NEE fluxes. The solid black lines represent the 1:1 (perfect) agreement; dashed lines are linear regressions with dotted lines

enclosing 95% confidence intervals.

RCP8.5). Under the stabilization climate scenario of RCP4.5,
NGS would increase by 48% to 0.45umolm—2s~1. Table 2
summarizes both mid-century (2050) and end of the century
(2100) predicted NGS-NEE CO, fluxes under the three RCPs.

Discussion

Our results for the Mer Bleue Bog site support the hypothesis that
environmental changes accompanying climate warming have the
potential to increase CO, emissions from peatlands during the
NGS, hence potentially strengthening a positive climate feedback
loop. As expected, the predicted NGS-NEE increase is highest for
the climate scenario with the largest radiative forcing and vice
versa. The predictor variables for NGS-NEE further implies that
both subsurface and surface processes play important roles in
modulating the net CO, fluxes during the NGS. The subsurface
controls are likely linked to the decomposition of soil organic
matter, which is known to strongly depend on soil temperature
and moisture. Aboveground turbulent transport of CO, and
energy balances, in turn, depend on meteorological conditions
and snow cover dynamics*3*4. In the following discussion special
attention is given to the influence of snow on both surface and
subsurface processes modulating NGS-NEE of CO,.

Subsurface processes. According to the GSA, at the Mer Bleue
Bog site soil temperature is the second most sensitive predictor
variable of NGS-NEE (Fig. 3), with a positive influence on the net
emission of CO, (Fig. 2). This positive effect is consistent with the
positive temperature dependence of soil microbial respiration,
even when soil temperatures approach or drop below zero during
the winter!34>46 Tn the climate projections considered in this
study, soil temperature changes were assumed to be controlled by
the predicted changes in air temperature, with an imposed 1°C

attenuation (see “Climate projections”). The actual relationship
between air and soil temperatures during the NGS may be far
more complex, however, largely due to the influence of snow
coverage on the belowground thermal regime?’-48, Even at the
shallow depth of 20 cm, Mer Bleue Bog peat rarely freezes despite
mostly subzero winter temperatures (Supplementary Fig. S1).
This can be explained by the insulating effect of the snowpack,
with peak annual snow depths ranging from 30 to 120 cm for the
1998-2010 period. With the projected decreases in snow depth
and fractional snow-cover for the Ottawa region®, the more
exposed soils could experience greater heat loss and, conse-
quently, cooler peat temperatures. More detailed future projec-
tions of the changes in soil temperature will have to take into
account the possible confounding effect of reduced snow cover.

Snow depth and coverage also alter the mechanisms and rates
of soil-atmosphere gas exchanges, with variable contributions of
diffusive and non-diffusion transport®. A lower fraction of snow-
covered soil diminishes the gas transport barrier and enhances
the release of CO, while, at the same time, facilitating the influx
of molecular oxygen (O,) which fuels the production of soil CO,
by aerobic respiration. However, surface heterogeneities, includ-
ing hummock and hollow peat microforms, may cause differential
snow accumulation patterns that influence the overall effect on
NGS-NEE of a reduction in snow cover. Such small-scale
processes are a source of uncertainty not taken into account in
our analysis.

Climate warming may also increase in the frequency of
freeze-thaw events, especially at the start and near the end of the
NGS. Many recent studies have linked freeze-thaw cycles to
variations in CO, emissions®?-33. Recurring freezing and thawing
alter the physical and biological processes that contribute to
winter soil respiration®#->%. In addition, freezing causes ice layers
to form in the snowpack and in the near-surface peat resulting in
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Table 1 Sensitivity indices for the predictor variables and a
dummy variable.

Parameter
Wind speed [ms—1]

Sensitivity index (SI)
0.62 (0.60-0.63)

Soil moisture [m3m=3]

Air temperature [°C]

Soil temperature [°C]

Wind direction [°]

Upwelling photosynthetic flux density

0.61 (0.59-0.63)
0.51 (0.49-0.54)
0.72 (0.71-0.74)
0.08 (0.07-0.10)
0.33 (0.31-0.35)

[umol m—2s=1]
Net radiation above canopy [W m—2]
Dummy variable

0.98 (0.98-0.99)
0.03 (0.01-0.05)

Values in parentheses correspond to 2000 bootstrapped 95% confidence intervals.

ice encasement®’. The formation of ice layers traps CO, produced
or stored in the peat and snowpack while thawing of the ice
results in the release of the trapped CO, to the atmosphere.
Besides soil temperature, the modeled NGS-NEE CO, fluxes
are sensitive to soil moisture recorded at 20 cm depth (Fig. 3). At
this depth, NGS soil moisture in the Mer Bleue Bog remains quite
low (typically less than 0.15m3m~3, Supplementary Fig. S1)
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because of the relatively good drainage of the surface peat. Values
of ~0.04 m3 m~3 occur when peat at 20 cm occasionally freezes
indicating a continued availability of unfrozen water during
winter, likely as thin films surrounding organic soil particles®®.
The positive and nonlinear correlation between soil moisture
content and NGS-NEE at Mer Bleue (Fig. 2) agrees with similar
positive relationships reported by Hirano?4, Liptzin et al.2°, and
Schindlbacher et al.>®.

In our GSA and ML modeling, we rely on the soil temperature
and moisture content data recorded at 20cm depth. This
is justified because most decomposition of plant debris (and
hence CO, production) in peatlands occurs within the upper
10-20cm®. In addition, the temporal records of both soil
properties exhibited sufficient variability at 20 cm depth to train
the ML model. At the Mer Bleue Bog site, temperature and
moisture are higher deeper in the soil profile by the end of the
NGS. However, the lack of fresh plant residues and O, at these
depths limit microbial mineralization®!-2 and, thus, variations in
temperature or moisture below 20 cm are unlikely to have a
strong impact on the NGS-NEE CO, fluxes.

Because of its mid-latitude location (45°24'N), the Mer Bleue
Bog site will continue to experience a high frequency of near
freeze-thaw cycles over the remainder of the 21st century®3. The
implications of changes in freeze-thaw frequency and timing for
the instantaneous and cumulative CO, emissions during the
NGS, at this site and across peatlands in general, remain to be
fully understood. Similarly, the length of time during winter when
the soil is continuously frozen probably affects the NGS-NEE, in
line with Humphreys et al.®* who showed smaller winter CO,
emissions for peatlands further north in the Hudson Bay
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Fig. 4 Future 30-min averaged values of nongrowing season net
ecosystem exchanges of CO, (NGS-NEE) under RCP2.6, RCP4.5, and
RCP8.5. Solid lines represent mean NGS-NEE and shaded regions bound

minimum and maximum predicted NEE over n =1000 model runs.

Lowlands compared to the Mer Bleue Bog. A fully predictive
understanding of CO, production and effluxes during the NGS
will require additional characterization of the temporal variations
in physical and biogeochemical properties and processes of the
snowpack and underlying peat.

Surface processes. The most sensitive predictor variable for
NGS-NEE is net radiation measured above the canopy (Fig. 3). With
increasing net radiation, the modeled net CO, emissions decrease
and NEE eventually switches to net CO, uptake. Net radiation in the
NGS, particularly in early spring (February-March), strongly
depends on the ground snow coverage. Upwelling PPFD also exerts a
negative effect on NGS-NEE. With wavelengths between 400 and
700 nm, the PPFD encompasses part of the shortwave radiation
spectrum and provides energy to support photosynthetic CO, fixa-
tion. Similar to net radiation, upwelling PPFD at Mer Bleue Bog is
greatest in early spring as days get longer and a large fraction of
incoming radiation is reflected from the snow surface.

The strong negative correlation between NGS-NEE and net
radiation and, to a lesser extent, upwelling PPFD (Fig. 2) may be
the result of patchy snow accumulation and melting, which
exposes Sphagnum-covered hummocks to light thus enabling
photosynthesis®®. Sphagnum growth has been shown to depend
on various environmental factors related to snow coverage,
including the timing of snow onset and retreat, the amount of
snow, mid-winter thawing, and drifting snow conditions®-67,
Nonnegligible primary productivity by bryophytes may thus have
important, but largely unexplored, consequences for estimating
peatland NGS-NEE of CO,.

With projected decreases in snow-water equivalents and snow-
cover fractions at Mer Bleue Bog over the 2lst century’,
interesting implications arise for advective sensible heat transfer
between bare soils and snow patches®®%%, Rain-on-snow events
may similarly have significant impacts on NGS-NEE. With a
greater proportion of NGS precipitation falling as rain’%-72, rain-
on-snow events can result in wetter soils and reduced or removed
snow coverage. Under these conditions, photosynthetic activity
during the NGS may play an increasingly important role in the
annual C budget of the Mer Bleue Bog and, by extension, other
temperate and boreal peatlands’374,

The final sensitive predictor variable is wind speed which
correlates positively with NGS-NEE (Figs. 2 and 3). A positive
relationship is expected as turbulent exchanges of CO,, heat, and
moisture are driven by forced convection during the NGS when
the surface is snow-covered and the atmosphere remains neutral
or stable. In addition, wind-induced ventilation of the snowpack
can cause pulse emissions of CO, stored in the snow and the
porous and unsaturated near-surface peat’>74 Turbulent
exchanges of heat and moisture play important roles in governing
the snowpack energy balance’>’. Wind can, therefore, be
indirectly linked to subsurface CO, production processes through
its effects on energy fluxes into the ground.

Table 2 Predicted mean nongrowing season net ecosystem exchange fluxes in years 2050 and 2100.

Case Mean NGS-NEE (year 2050) % increase (year 2050)2 Mean NGS-NEE (year 2100) % increase (year 2100)?
[umolm—2s1] [umolm—2 s 1]

RCP 2.6 0.32 (0.32-0.33) 5.0 (3.1-6.5) 0.36 (0.35-0.36) 17 (14-19)

RCP 4.5 0.40 (0.39-0.41) 30 (28-33) 0.45 (0.44-0.46) 48 (44-50)

RCP 85 0.47 (0.46-0.48) 52 (49-56) 0.62 (0.60-0.63) 103 (96-107)

Values in parentheses represent the minimum and maximum values from 1000 runs of the model.

aPercentage increase relative to mean nongrowing season net ecosystem exchanges (NGS-NEE) for the period 1998-2010.
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Some cautionary notes. As for ML in general, the development of
the NGS-NEE model was only possible because the dataset for the
Mer Bleue Bog site was large and diverse enough to enable the
model learning process. Applying the same methodology to other
locations is thus contingent on access to sufficient data records. In
addition, a limitation of the ML approach is that only predictor
variables included in the available dataset can be selected. Impor-
tant variables not explicitly represented in the dataset may there-
fore remain hidden. Such variables may include, for example, the
structure and pH of the peat, groundwater flow rates and path-
ways, and the timing and the frequency of rain-on-snow events.

Furthermore, the inferred sensitivity ranking and effects of
the predictor variables, and the projected future changes in
NGS-NEE, are site-specific and cannot be automatically extra-
polated to other locations. Rather, the Mer Bleue Bog provides
a reference site against which differences in the importance
of surface and subsurface processes across peatlands can be
hypothesized to lead to differences in NGS-NEE CO, fluxes and
their sensitivity to environmental change. For instance, compared
to the Mer Bleue Bog, extensive permafrost at higher latitudes
results in unique thermal and hydrologic regimes regulating CO,
exchanges of peatland ecosystems®%77-78, For these peatlands, the
future trajectories of NGS-NEE will undoubtedly be impacted by
permafrost thaw due to climate warming’?-81.

The results of the sensitivity analysis and ML modeling are also
affected by how the NGS is defined. Our results actually point to
non-negligible photosynthetic CO, fixation during the NGS, in
order to explain the role of net radiation on the observed
NGS-NEE. We speculate this may primarily reflect the onset of
Sphagnum growth in early spring when snow cover is still present.
To address the ambiguities related to the definition of the NGS,
research should focus on a finer-resolution (say, monthly)
analysis of the variations in NGS-NEE from late fall to early
spring. The more detailed temporal trends of NGS-NEE should
in turn yield more robust estimates of the contributions of the
winter and shoulder seasons to the annual NEE of peatlands.

The projected future trajectories of NGS-NEE CO, emissions
are based on estimating how the seven predictor variables will
change under a set of radiative forcing scenarios. Future
NGS-NEE trajectories will also be affected by other environ-
mental drivers, including, for instance, future shifts in vegetation
and fauna (including invasive species), and changes in land use
and water management. Continued global warming may also
increase the absorption of CO, by peatlands during the growing
season while decreasing the length of the NGS. Together, the
changing NEE of growing and non-growing seasons will
ultimately determine the evolving status of a given peatland as
either a net CO, sink or source.

Conclusions

The NGS-NEE CO, fluxes at Mer Bleue Bog over the period
1998-2010 can be reproduced by taking into account seven
environmental variables: near-surface soil temperature and
moisture, wind speed and direction, air temperature, net radiation
above the canopy, and upwelling (i.e., reflected) PPFD. Of these
seven predictor variables, net radiation and wind direction are the
most and least influential, respectively. The significant effects of
soil temperature and moisture are expected due to their roles in
the subsurface production of CO,. The effects of net radiation
and upwelling PPFD is attributed to photosynthetic CO, uptake
by Sphagnum mosses during the NGS, while wind speed controls
the release and aboveground transport of soil CO,. In turn, most
of the predictor variables are themselves influenced by variations
in the spatial distribution and depth of the snow cover. The mean

NGS-NEE CO, fluxes at Mer Bleue Bog site are projected to
increase during the 2021-2100 period, reaching values by the end
of the 21st century that is 17%, 48%, and 103% higher under the
RCP2.6 (low), RCP4.5 (medium), and RCP8.5 (high) radiative
forcing scenarios, respectively. Thus, in a warmer world, the Mer
Bleue Bog site will act as a stronger source of CO, during
the NGS.

Site description and methods

Site description. The Mer Bleue research site is a low shrub
domed ombrotrophic bog located within a 2800 hectare wetland
complex in Ottawa, Canada (45°24'N, 75°30'W)%4. Originally part
of the Peatland Carbon Simulator Project32, the site has been
continuously monitored for CO,, energy (latent and sensible
heat), radiative (long and shortwave radiation), and momentum
fluxes since the construction of an EC tower in 1998. Mer Bleue
has been part of a number of flux tower networks including the
Fluxnet-Canada Research Network, the Canadian Carbon Pro-
gram, Ameriflux, and FLUXNET.

The Mer Bleue site has a mean annual air temperature of
6.0 °C. Seasonal air temperatures between November to April and
May to August of —3.7 and 18°C, respectively (climate
normal)®*. Annual precipitation at Mer Bleue is 943.5 mm with
341.7 mm of this precipitation falling between May and August®4.
Soil temperatures below the surface are rarely frozen at Mer Bleue
with mean NGS temperatures (1998-2010) of 0.27 °C at a 20 cm
depth (see Supplementary Fig. S1). Vegetation at the Mer Bleue
research site is comprised of a near-continuous cover of
Sphagnum capillifolium and Sphagnum magellanicum with an
overstory dominated by ericaceous shrubs including Chamae-
daphne calyculata, Kalmia angustifolia, Rhododendron groenlan-
dicum, and Vaccinium myrtilloides, along with some sedges
(Eriophorum vaginatum) and herbs (Maianthemum trifolium)33.
The area underwent bog formation starting approximately 7000
years ago with current peat depths ranging between <0.3 m at the
margins to >5 m in the center of the bog8%. The research site area
has a typical hummock-hollow (70-30%) microtopography with a
mean elevation difference of 0.25 m between hummock-tops and
hollow-bottoms3> with few scattered tree species (Larix laricina,
Betula populifolia, and Picea mariana)®.

Data acquisition. Fluxes and ancillary measurements of micro-
meteorological parameters recorded at the Mer Bleue site were
obtained from the Fluxnet Canada Research Network via the Oak
Ridge National Laboratory’s Distributed Active Archive Center for
Biogeochemical Dynamics (ORNL DAAC) (https://daac.ornl.gov).
The 13-year dataset (1998-2010) was retrieved and filtered to only
extract NGS-specific data. For this study, we define NGS as the
period starting with the first day of the first 3 consecutive days
with ground snow coverage and ending with the first day of the
first three consecutive days with bare ground. The corresponding
dates along with the associated NGS durations are provided in
Supplementary Table S1.

Values of NEE were derived from CO, fluxes measured by EC
with a three-dimensional sonic anemometer thermometer (model
1012R3 prior to September 1, 2000, and model R3-50 thereafter;
Gill Instruments Ltd., Lymington, UK) and closed-path H,O/CO,
gas analyzer (model LI-6252 until September 1, 2000, LI-6262
until January 1, 2004, and LI-7000 thereafter; LI-COR Inc.,
Lincoln, NE) located 3m above the bog surface®’. High-
frequency data (10 Hz prior to 2004, 20 Hz thereafter) were used
to average fluxes over a 30-min period. Details on the flux
calculation are given by Roulet et al.3* they involved accounting
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for air density fluctuations using either the WPL procedure®® or
high-frequency calculation of CO, and H,O mixing ratios.

Although no spectral corrections were applied, a correction
factor of 1.25 was applied to the CO, fluxes prior to 2004 to account
for the changes in the EC system in 2004, which reduced
high-frequency flux attenuation®®. Thus, this CO, flux dataset
retains some bias due to high and low-pass filtering effects. A subset
of the flux data collected since 2004 was reprocessed using LI-
COR’s EddyPro v7.0.6 software and demonstrated that this
underestimation is approximately 10%. Specifically, fluxes with
analytic corrections of high-pass®” and low-pass®® filtering effects
were 1.11 times greater than fluxes without spectral corrections
(least-squares linear regression, intercept=0.06 umol m—2s1,
2 =0.994, root mean square error (RMSE) = 0.31 umol m—2s1),
Fluxes with analytic corrections of high-pass filtering’, in-situ
corrections of low-pass filtering®®, and corrections for instrument
separation (crosswind and vertical)>® were 1.08 times greater than
CO, fluxes computed with no spectral corrections (intercept =
0.01 pmol m~2s~1, 2 =10.996, RMSE = 0.23 pmol m—2s~1). The
analysis cut-off frequency used in Fratini et al.3° was 1.28 Hz for
CO, and between 0.33 and 0.70 Hz for H,O. Further details of
uncertainties associated with EC data acquisition are presented in
Massman and Lee’!, including unreliable spectral nighttime
corrections, and 2D and 3D advective effects.

At any given time, NEE is the sum of the turbulent CO, fluxes
and the rate of change in CO, storage below the EC tower
calculated from the concentrations of CO, measured by the EC
instrumentation. We define positive NEE as the net release of
CO, from the ecosystem while negative NEE represents net CO,
uptake by the ecosystem. Thus, NEE represents the difference
between gross primary productivity and heterotrophic plus
autotrophic respiration (together referred to as ecosystem
respiration). Note, that although the primary productivity of
vascular plants during the NGS is usually negligible, this may not
be the case for peat-forming mosses (see “Surface processes”).
NEE fluxes were removed from the dataset in case of instrument
malfunction, statistics outside of acceptable limits, and when the
nighttime friction velocity dropped below 0.1 ms™1.

Accompanying measurements of weather conditions and soil
temperature and moisture was collected at varying frequencies
(from 5s to 30 min) and averaged over 30-min intervals (for
further details, see Roulet et al.3%, and Lafleur et al.8%). The
measured variables are listed in Supplementary Table S2 and
include radiation variables (variables #4-13, 57, 68), relative
humidity (#14-15), air temperature (#16-18, 48), soil tempera-
ture (#19-37), soil moisture and water table depth (#50-56, 46),
precipitation (#44-45, 49), wind speed and direction (#38-43),
and atmospheric pressure (#47). In addition to these ancillary
variables, the dataset includes friction velocity (#60), sensible
(#59), and latent heat fluxes (#58) also measured based on EC and
the rate of change in CO, storage (#61) and CO, flux (#62) as
described above.

Variable selection. The initial dataset containing 68 variables
(67 predictor variables and 1 response variable) was subjected to a
four-step variable selection methodology (Fig. 5). The metho-
dology was designed to reduce the number of variables repre-
sented in the dataset, leaving only those that exert the greatest
influence on the NGS-NEE of CO,. Only these remaining pre-
dictor variables were then used in the creation of the ML model.

Correlated variables. As a first step, collinearities between vari-
ables were examined by computing Pearson’s linear coefficients of
correlation (p) between pairs of variables. The correlation matrix
(M) of p for each pair of variables (x, y) was obtained using the

Flowchart Summarizing
Variable Selection Methodology

Pairwise | .| Missing Near-Zero
Correlations Data Variance
|
V
Random Final
Forest Predictors

Fig. 5 A flowchart summarizing the variable selection methodology. From
67 originally, predictor variables were selected down to 7: (1) soil
temperature (at 20 cm depth) [°C], (2) soil moisture (at 20 cm depth)
[m3m=3], (3) air temperature [°C], (4) wind speed [ms~1], (5) wind
direction [°], (6) net radiation above canopy [W m~2], and (7) upwelling
(reflected) photosynthetic photon flux density (PPFD) [umol m—2s~1].

following equations:

Cov = g‘,l @& =00, =) ;;\](yi =) (1)
_ Cov(x,y)
=00, ()
_ [P(x, x) p(x,y)} 3)
Py, x)  p(y,y)

where Cov represents the covariance between variables (x) and

(), x and y are the mean values of the variables (x) and (y),
respectively, and o is the standard deviation for each variable.
Note that in M pairwise correlations between the same variables,
i.e, p(x, x) and p(y, ), equal unity. Pairs of variables with |p| >
0.75 were identified and labeled as correlated variable 1 (CV1)
and correlated variable 2 (CV2). The average correlation between
CV1 and the remaining 67 variables was then calculated. The
process was repeated for CV2. The CV with the largest average
correlation with the remaining 67 variables in the dataset was
removed. Using this approach, 40 predictor variables were
removed. Figure 6 provides a visual representation of variable
collinearities prior to the application of the variable selection
methodology. For variables in which the linear correlation coef-
ficient could not be calculated due to missing observations or a
standard deviation of zero, a Not a Number placeholder was
assigned.

Missing sata and near zero variance. In order to reduce biases in
the development of the ML model, no gap-filling or data impu-
tation methods were applied. Variables with more than 50% of
observational values missing were removed from the dataset.
Supplementary Figure S2 presents an overview of the data cov-
erage over the data record used in this study. With this threshold,
nine variables were eliminated. The remaining 19 variables were
screened and removed if their variance approached zero. Vari-
ables with minimal to no variation in their values contribute
minimally to the model learning process. They are also likely to
be of lesser relevance in predicting future NEE than variables
prone to change®. Variables were therefore discarded if the
fraction of their unique values was low, and the ratio of the mode
to the second most common value (defined as the frequency
factor) was high®3. Specifically, in this study, predictors with
<10% of their total observed values being unique and a frequency
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Fig. 6 Calculated Pearson's correlation coefficients (o) showing pairwise collinearities between 68 variables. Variables were labeled from 1to 68 and
aligned along each axis (see Supplementary Table S2), with variable 67 representing the non-growing season net ecosystem exchanges of CO,

(NGS-NEE).

factor greater than 20 were removed, as proposed by Kuhn and
Johnson?3. Using these criteria, 1 predictor was removed leaving
18 remaining predictors.

Random forest permutation. A Random Forest Ensemble Model
(REM) was used to rank the importance of each of the variables
remaining after the selection procedure. Random forest regres-
sion is a supervised learning algorithm that considers an
ensemble learning method and bootstrap aggregation. This
algorithm uses combinations of trained decision trees to obtain a
predicted output. The reader is directed to Breiman®* for a
detailed discussion of random forests. In this study, the RFM
consisted of an out-of-bag variable importance estimation algo-
rithm modified for regression analysis according to Breiman®%.
The RFM was trained on the observations for each of the
remaining variables (x;) using 500 learner trees. Surrogate splits
helped reduce biases due to the presence of missing observations.
To further minimize bias, an interaction-curvature test was
applied during the training process such that tree splits were
made on predictors that minimize p-values from pairwise chi-
squared (y?) tests of independence between the predictor and the
response®.

To estimate the importance of each variable, predictions based
on the data used for the training of the RFM were compared to
observations not used in the creation of the trees (i.e., the out-of-
bag samples). The mean-square error (MSE) between predictions
using the training data and the out-of-bag samples was
determined and referred to as the out-of-bag error (g, ). The
observations of each variable (x;) were randomly permuted and a
prediction .. obtained. The model error for each observation (e,,,;)
was calculated by comparing y; to the out-of-bag samples. The
mean difference A, between ¢, and &, as well as the standard
deviation (0;) of the differences in permuted values overall
learners, were calculated. The predictor importance was then
expressed as

(4)

where I; measures the importance of each predictor j: a larger
value of I; represents greater importance. Based on the value of I,
soil temperature and moisture (at 20cm depth below the
hummock surface), wind direction and speed, air temperature,
net radiation (above the canopy), and the upwelling PPFD were
identified as the final predictor variables for use in developing the
NGS-NEE ML model. Values of I; are presented in Supplemen-

tary Table S3 for the reader reference.

NGS-NEE model development. Further data preprocessing
standardized the values of each of the final predictor variables
between 0 and 1. A K-means clustering algorithm was then
applied to n=15,267 observations to collapse and group the
dataset into 122 representative centroids. The K-means clustering
algorithm is an iterative unsupervised learning algorithm that
aims to assign individual observations into K distinct clusters to
minimize the intra-cluster sum of squares®. The centroids of
these clusters contain the statistical information of individual
clusters thus allowing for increased training speeds by reducing
the number of data points®’. The number of clusters used in this
analysis was determined by applying the K-means clustering
algorithm for increasing values of K (K€ Z",1<K<[/n1)
until 99% of the variance in inter-cluster Euclidean distances
between data points and individual clusters was explained. The
reader is directed to Telgarsky and Vattani®® for a detailed
description of the K-means clustering algorithm.

A wide range of regression algorithms (linear, tree-based,
support vector, Gaussian process-based, and ensembles) was
trained and validated using a tenfold cross-validation strategy on
85% of the entire dataset (training dataset). The tenfold cross-
validation strategy randomly partitioned the data into ten
segments of roughly equal size, and systematically trained data
on nine of the ten partitioned folds while using the remaining
tenth segment to estimate model performance. The process was
repeated until all ten of the segments had been used to evaluate
model performance. The 10-fold cross-validation strategy was run
1000 times, with each run consisting of a newly partitioned
training (85%) and testing dataset (15%).
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Model performance was evaluated based on the root-mean-
square error (RMSE) and coefficient of determination (r2)
averaged over the 1000 runs of the 10-fold cross-validation

RMSE = \/%Ezl(fy)2 ©)

i (x; _yi)2
=2
Z?:l(yi =)

where Y7 (x; —y,)* represents the sum of squared errors

P=1-

(6)

between the predicted (x;) and observed NEE (y;) and y
represents the mean observed NEE flux over the entire data
record.

Model testing using the remaining 15% of the dataset (testing
dataset) was evaluated using the mean r2 and RMSE values over
1000 runs, with each run consisting of a uniquely partitioned
testing and training dataset. Comparing the computed RMSE and
12 values for all trained models, an epsilon insensitive support
vector machine regression (e-SVM) model was selected because it
had the lowest RMSE and highest r? values. An additional
advantage of a e-SVM model is its relatively simple structure and
implementation. The performance of other regression algorithms
used in this analysis for comparison is provided in Supplementary
Fig. S3.

Support vector machines comprise a set of Kernel-based ML
algorithms for classification and regression analyses. SVMs
generally operate through the nonlinear mapping of input vectors
into a higher dimensional space and solving optimization
problems in this space®®. In the case of classification, an
optimization problem is solved to correctly classify the greatest
number of observations through maximizing the margin
separating the hyperplane, which is controlled by the presence
of support vectors!%. For regression analyses, this concept is
extended to include a region surrounding the plane referred to as
the e-insensitive region. The goal of the SVM regression is to
solve a convex optimization problem that aims to minimize a
defined e-insensitive loss function while maximizing the flatness
of the e-insensitive region which contains many of the training
observations. The reader is directed to Cortes and Vapnik®® and
Awad et al.10 for a detailed mathematical discussion of SVMs.

With few model parameters, SVMs have been shown to mimic
the performance of the best artificial neural networks!0! that have
been used extensively in modeling CO, fluxes7-38, Moreover, the
computational complexity of SVM regressions does not depend
on the dimensionality of the input space making for an attractive
choice for large datasets with many variables!%0. The trained e-
SVM uses a quadratic kernel, with hyperparameters determined
based on the interquartile range of the observed NGS-NEE.
Training data used in the creation of the &-SVM model are
provided in Supplementary Data 1.

Sensitivity analysis. A moment-independent GSA was conducted
based on PAWN!02, Unlike other density-based sensitivity ana-
lyses, PAWN uses empirically computed cumulative density
functions (CDFs) rather than probability density functions to
calculate sensitivity indices (SI). Given the non-normal distribu-
tion of the observed NGS-NEE (Supplementary Fig. S1), the
variance of the NGS-NEE distribution would not adequately
capture the model uncertainty!?3. Hence, PAWN offers a more
natural choice for the calculation of SIs.

We implemented PAWN using the SAFE MATLAB Toolbox,
an open-source toolbox developed by F. Pianosi, F. Sarrazin, and
T. Wagener (https://www.safetoolbox.info/). Modifications to this
toolbox were made to handle the nonparametric distributions

unique to the underlying distribution of the variables used in this
study (Supplementary Fig. S1). SI was calculated as the distance
between the conditional and unconditional CDFs. Here, this
distance was approximated using the Kolmogorov-Smirnov
statistic. Unconditional CDFs were calculated by varying all
input variables simultaneously, while conditional CDFs were
obtained through varying all input variables except one, which
was allowed to vary within a specified range of values
(conditioning intervals). Supplementary Figure S4 provides a
visual representation of the empirically derived CDFs through a
regional sensitivity analysis.

The GSA used n = 8000 samples obtained via Latin Hypercube
Sampling in five conditioning intervals, yielding a 2000 boot-
strapped 95% confidence interval. A dummy variable in the GSA
served as a control against which the SIs of other variables were
compared. SI values range from 0 to 1, with zero representing null
effects (no sensitivity) and 1 representing the largest sensitivity to
modeled NEE. For a more detailed description of PAWN, the
reader is referred to Zadeh et al.!%4, Pianosi and Wagener!02105,
and to Noacco et al.19 for examples of the use of the SAFE toolbox.

Climate projections. Three future climate scenarios were con-
sidered: RCP2.6, RCP4.5, and RCP8.5. These scenarios describe
the climate trajectories associated with stringent, moderate, and
high degrees of radiative forcing, respectively!?7. Values of the
most sensitive model variables (soil temperature and moisture, air
temperature, wind speed and direction, upwelling PPFD, and net
radiation above canopy; see “Sensitivity analysis”) were altered
according to their predicted changes under each RCP. These
predicted changes were obtained from either previously con-
ducted studies or outputs from global climate models and are
described hereafter.

Winter air temperature projections for the Ottawa region
under each RCP were obtained from statistically downscaled
(10km spatial resolution) predictions from 24 global climate
models participating in the fifth phase of the Coupled Model
Intercomparison Project (CMIP5). The obtained data were
previously statistically downscaled using the Bias Correction/
Constructed Analogs with Quantile mapping version 2
(BCCAQv2) algorithm!08:109, Changes in soil temperatures were
assumed to be 1°C lower than the projected changes in air
temperature based on the work of Zhang et al.l!0. and Wisser
et al.''l. Winter wind speeds and directions were kept constant
for all RCPs as predictions by Jeong and Sushamal!l? and
Mclnnes et al.!13 showed little to no increase in wind speeds in
the Ottawa region, in contrast to the predicted increases in
regions at higher latitudes in Canada.

Predicted changes for upwelling PPFD and soil moisture were
obtained as outputs from the Second Generation Canadian Earth
System Model (CanESM2). Predicted reductions in upwelling
shortwave radiation were used as a proxy for reductions in
upwelling PPFD, given that photosynthetically active radiation
falls partly in the shortwave radiation spectrum. It is recognized
that changes in upwelling radiation are difficult to predict due to
complex interactions between changing snow-cover fractions’,
sea ice-snow albedos™!14, and aerosol concentrations!!>.

Changes to net radiation were applied linearly between 2021
and 2100. The net change by the year 2100 corresponded directly
to the radiative forcing associated with each RCP (+2.6, +4.5,
+85W/m? for RCP2.6, 4.5, and 8.5, respectively). Mean
NGS-NEE CO, effluxes were then calculated with the ML model
using the predicted temporal trends of the seven predictor
variables for the 2021-2100 period. Net changes to the model
predictor variables under each RCP by the end of the 21st century
are presented in Table 3.
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Table 3 Climate projections: predicted changes in input variables by the end of the 21st century, according to the three radiative
forcing scenarios, representative concentration pathways (RCPs) 2.6, 4.5, and 8.5.

Time frame  Scenario Air temperature  Soil temperature Net radiation Upwelling PPFD Moisture content Wind speed Wind direction
[°C] [°C] [Wm2] [umolm—2s 1]  [m3m—3] [ms 1] [°]
2021-2100 RCP2.6 +1.8 +0.9 —-2.6 -15 —0.02 - -
RCP4.5 +3.8 +2.8 —45 —58 —0.02 - -
RCP8.5 +6.8 +5.8 -85 -80 -0.07 - -

The changes listed are relative to the corresponding 1986-2005 mean values.

Data availability

Supporting data and figures are provided in the Supplementary Material. EC data for the
Mer Bleue Bog site are available from the Fluxnet Canada Research Network via the Oak
Ridge National Laboratory’s Distributed Active Archive Center for Biogeochemical
Dynamics (ORNL DAAC) (https://daac.ornl.gov/FLUXNET/guides/FLUXNET_Canada.
html). CanESM2 model outputs and statistically downscaled CMIP5 model projections
are available from the Canadian Center for Climate Modeling and Analysis (https://
climate-modelling.canada.ca/climatemodeldata/cgcm4/CanESM2/index.shtml) and
(https://climate-scenarios.canada.ca/index.php?page=statistical-downscaling),
respectively. Future predictions, SVM model parameters, and additional data can be
found at the Federated Research Data Repository: https://doi.org/10.20383/102.0402.

Code availability
Code the GSA, variable selection methodology, development of the model, and future
predictions were developed using MATLAB version R2019b and is available on request.
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