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Contributions of C-Band SAR Data and Polarimetric
Decompositions to Subarctic Boreal
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Abstract—The objective of this paper is to assess the accuracy of
C-band synthetic aperture radar (SAR) datasets in mapping peat-
land types over a region of Canada’s subarctic boreal zone. This
paper assessed contributions of quad-polarization linear backscat-
ter intensities (0°HH, o°HY, o0°VYV), image textures, and two po-
larimetric scattering decompositions: 1) Cloude-Pottier, and 2)
Freeman—-Durden. Four quad-polarimetric RADADSAT-2 images
were studied at incidence angles of 19.4°, 23.1°, 45.8°, and 48.1°.
The influence of combining dual-angular information acquired
within a short temporal span was also assessed. These C-band
SAR data were used to classify peatlands according to isolated flat
bogs (bogs), channel fens (fens), raised peat plateaus (plateaus),
and forested uplands (uplands) using a supervised support vector
machine (SVM) classifier. Numerous classifications were examined
to compare the unique contributions of these variables to classi-
fication accuracy. Results suggest linear backscatter variables in
isolation produce comparable classification results with those of
the Freeman-Durden and Cloude-Pottier decompositions. Com-
bining polarimetric decomposition and texture data into classifica-
tions with linear backscatter data resulted in only minor (~1-3%)
improvement. Combining classifications from small and large in-
cidence angles (dual-angular) significantly improved classification
results over those of a single image. Classification accuracy was
the highest for isolated bogs and open water surfaces, whereas
fens, uplands, and plateaus had lower accuracies. The highest ac-
curacy classification (84% and kappa coefficient of 0.80) used a
dual-angular approach, with additional decomposition and texture
information. However, it is noted that texture information rarely
improved classification results across all tests. This approach iden-
tified isolated flat bogs, channel fens, and raised peat plateaus with
>76% producer’s accuracies.

Index Terms—Image -classification, peatlands, polarimetric
radar, synthetic aperture radar (SAR).
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1. INTRODUCTION

EATLANDS play several functionally important roles at
P the regional and global scales due to their controls on bi-
ological, ecological, and hydrological processes. For example,
peatlands recycle nutrients and purify water resources, both of
which are critical in the functioning and preservation of sensi-
tive ecosystems. Peatlands, on average, have also been a net sink
of atmospheric greenhouse gases over thousands of years [1],
making them an immense store of ancient carbon and methane.
However, boreal peatlands, specifically those at the southern
margin of the discontinuous permafrost zone (DPZ), have re-
cently undergone rapid permafrost loss and dramatic land cover
changes concomitant with a warming climate [2]-[5].

Permafrost thaw in these environments is very concerning,
as even small disturbances within the DPZ have the potential
to transform peatlands from atmospheric sinks into sources [6],
[7]. For example, using aerial photographs and high-resolution
optical satellite imagery dating from the 1940 s to 2000,
Beilman and Robinson [8] found permafrost areal extent losses
of 50% and 33% at two peatland sites within the DPZ (Trout
Lake and Liard River, Northwest Territories). This quantified
loss of permafrost aligns strongly with the warming trend that
has occurred over the northern hemisphere [9]. More specifi-
cally, Quinton et al. [4] show that mean annual air temperature
measured at Fort Simpson, Northwest Territories, has increased
from —4.1 °C during 1896-1970, to —3.2 °C during 1971-2000,
and to —2.3 °C during 2001-2007. Consequently, accelerated
permafrost thaw from amplified climate warming is affecting the
flux and storage of water from major land cover types, as each
performs unique hydrological functions [10]-[12]. As peatland
hydrology is largely connected to vegetation communities and
the extent of the underlying active layer, changes such as al-
terations to water storage pathways [13] and deepening of the
active layer [12] are predicted to drive large-scale changes in
ecosystem functions, such as carbon sequestration and biogeo-
chemical cycling [14]-[16]. This makes monitoring the rate and
spatial pattern of land cover change in this region a significant
task as continued warming is predicted over the coming decades
[17]. However, the extremely vast spatial extents of these sen-
sitive ecosystems, their relative inaccessibility, and their het-
erogeneous land covers necessitate the development of remote
sensing monitoring techniques.
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Techniques involving synthetic aperture radar (SAR) have
demonstrated great potential for mapping peatland spatial ex-
tent and types [18]-[22]. Spaceborne SAR sensors hold several
advantages over multispectral data for mapping peatland com-
plexes in northern hemisphere environment. SAR is favorable
because of the sensitivity of microwaves to surface hydrology
conditions as well as the condition and physical geometry of
vegetation. SAR sensors also operate independent of solar il-
lumination or cloud presence. Depending on the sensor and
mode of acquisition, SAR imagery can be acquired at relatively
fine resolutions (e.g., 10 s of m or less), which is valuable for
mapping localized vegetation change and the small-scale frac-
tionation of peatland cover type. Previous and current Earth
observation satellites equipped with SAR, such as ERS-1/2,
JERS-1, ENVISAT ASAR, and RADARSAT-1/2, offer(ed) a
range of image resolutions, some as fine as <10 m. The rela-
tively coarse resolutions of common multispectral sensors, such
as Landsat (30 m), have use for regional land cover mapping
but are limited in observing localized vegetation change and
the detailed fractionation of peatland cover type. Unlike SAR,
multispectral sensors are only sensitive to spectral and thermal
properties of the land-surface (often vegetation), but provide
no direct information on vegetation geometry, vegetation water
content, surface structure, or soil moisture.

Research has been conducted on the application of SAR for
mapping distinct aspects of peatlands, with examples including:
the monitoring of surface soil moisture conditions [23], [24],
seasonal inundation patterns [25], and estimating properties of
vegetation biomass [26], [27]. Much of the research conducted
using SAR has focused on multipolarization datasets. These
studies have provided knowledge on the most applicable fre-
quencies and polarizations for application to detecting peatland
properties, indicating that this depends on factors including the
local wetland type, water level, vegetation structure, density,
and height. For example, Baghdadi ez al. [18] used C-band SAR
for mapping wetland type in the Mer Bleue region near Ottawa,
Canada, and demonstrated that c°HV was optimal for differ-
entiating wetlands (forested and nonforested peat bogs) from
other land covers, achieving a 76% overall pixel classification
accuracy. At the same peatland site, Li and Chen [28] tested
the fusion of optical, SAR, and digital elevation model (DEM)
datasets for identifying open bog, open fen, treed bog, marsh,
and swamp wetlands and reported overall classification accu-
racies of 71-92%. Whitcomb et al. [22] used L-band SAR im-
agery for mapping vegetated wetlands of Alaska and produced
a high-resolution large-scale thematic map with 89% overall
accuracy. Atwood et al. [29] also used L-band SAR to demon-
strate an improved gamma naught (v°) radiometric correction
technique, through classification of a site within interior Alaska
characterized by wetlands, herbaceous tundra, and evergreen
and deciduous forests. With the application of this technique,
woody wetlands were classified with 64% user’s accuracy and
72% producer’s accuracy.

Supplementary SAR information such as polarimetric de-
composition parameters and image textures is also beneficial for
assisting in wetland classifications. Incoherent decompositions,
which express the average scattering mechanism of a distributed
target (e.g., [30]-[32]), have become a widely researched
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technique for land cover classifications with SAR data,
including wetlands. Two of the most commonly reported
scattering decompositions are those of Cloude and Pottier
[30] and Freeman and Durden [31]. Brisco et al. [33] found
the Freeman—Durden decomposition effective at delineating
wetland boundaries because of the characterization of double-
bounce scattering from flooded vegetation. These researchers
also found the Cloude—Pottier decomposition capable of
classifying different plant functional groups within wetlands
(65% overall accuracy). Antropov et al. [34] also used the
Freeman—Durden scattering components to map soil types
under vegetated peatlands with promising results (up to 70%
overall accuracy). Walfir et al. [35] used manual interpretation
techniques of RADARSAT-1 textures and tones for identifying
wetland cover classes of the Brazilian Amazon. An accuracy
assessment was not completed; however, they did conclude that
the SAR texture products were fundamental in providing con-
sistent wetland information. In another example, Arzandeh and
Wang [36] used texture analysis to improve single-date radar
images of a wetland complex and found that optimal multiple-
texture combinations significantly improved the discrimination
between wetland and nonwetland areas (88% overall accuracy
classifications of wetlands vs. nonwetlands). The previously
cited study by Whitcomb et al. [22] also used summer and
winter JERS image texture (and other inputs and ancillary data),
generated from the full-resolution (12.5 m) SAR backscatter,
to assist in developing wetland classifications of Alaska.

Although various studies have explored the utility of SAR for
peatland mapping, few have identified the combined influence
of various SAR datasets at multiple incidence angles. Dual-
or multi-angle approaches have shown to improve target char-
acterization within other realms of SAR research (e.g., [37],
[38]), thus justifying the need to explore this technique more
thoroughly with a focus on wetland classification. Address-
ing this gap within the SAR literature may ultimately present
an improved methodology for users applying SAR imaging in
wetland-dominated environment. The objective of this paper
is to assess the contributions of multipolarization backscatter,
image textures, and two polarimetric SAR decompositions de-
veloped from the summer acquired RADARSAT-2 imagery for
classifying subarctic boreal peatlands in the southern margin of
discontinuous permafrost in northwestern Canada. The purpose
of this research is to identify the importance of the Cloude—
Pottier decomposition, Freeman—Durden decomposition, and
various image textures to image classification, in contrast to
backscatter information available only from multipolarization
datasets. Additionally, we examine the impact of single image
compared to combined dual-angle (two-image) image acquisi-
tions on classification accuracies.

II. STUDY SITE AND TARGET LAND CLASSES

Research was conducted within the lower Liard River valley,
in the Scotty Creek basin (Lower Liard watershed), Northwest
Territories, Canada (see Fig. 1). Scotty Creek (61°18’N;
121°18’W) is a relatively small watershed (152 km?) located
50 km south of Fort Simpson. Scotty Creek has a low drainage
density (0.016 kmkm™2) and basin slope (0.0032°) with
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Fig. 1. Location of the Scotty creek watershed, Northwest Territories, Canada.
elevation ranging between 240 and 290 m [39]. Scotty Creek
watershed is located in the continental high boreal wetland
region of Canada and within the DPZ. It is also within the Taiga
Plains, a terrestrial ecozone consisting largely of coniferous
forest with pines (Pinus), spruces (Picea), and larches (Larix),
as well as aspens (Populus) and birches (Betula).

Scotty Creek watershed is a wetland-dominated landscape
primarily consisting of peat plateaus, channel fens, flat bogs,
wooded uplands, and open-surface water (see Fig. 2). These land
cover types were of interest for the classifications performed in
this study. Peat plateaus are underlain by a perennially frozen
core [40] and rise 1-2 m above the regional water table due to
the expansion of their frozen peat. Plateaus are forested (>70%
tree cover) to wooded (30-70% tree cover), typically with a uni-
form cover of open-canopied black spruce (Picea mariana) [41].
Plateau ground cover contains various lichens and mosses, but
is predominately ericaceous shrub and Sphagnum-dominated.
Adjacent to plateaus are permafrost free flat bog and channel
fen wetlands. This proximity supports the lateral exchange of
runoff from raised plateaus to wetlands, while saturated wetland
conditions have thermal influences on plateau edge degradation;
these are unique hydrological processes of this ecosystem [39].
Channel fens are characteristically located along the drainage
network of basins in the form of 50 to >100 m wide channels
[11]. As a result, interconnected channel fens provide drainage
pathways between major water bodies, such as lakes, through
lateral flow conveyance [39]. Ombrotrophic flat bogs are fea-
tureless surfaces that form in broadly defined and poorly drained
depressions. Sphagnum species mostly cover their featureless
surfaces, which overlies yellowish peat with Sphagnum remains.
Also prevalent are club-moss (Lycopodium), liverwort species
(Marchantia), and various fungi [42]. The water table is at or
slightly below the surface of bogs and they characteristically
have low inputs of basic cations and nutrients, resulting in low
pH (<4.5) [43]. This is contrasting to minerotrophic channel
fens, which are commonly of neutral pH (>5.5) [43] because
of their sources of groundwater which typically result in them
being species-rich. Depending on their nutritional characteris-
tics (e.g., fens can be classified as poor, moderate, or rich), fens
may support a variety of brown mosses, trees, shrubs, sedges, or
Sphagnum [14], [45], and thus their concentrations of biomass
and vegetation are variable. Wooded uplands are located on well-
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drained moraine deposits with rocky mineral soils that support
tall deciduous-dominated mixed forests. As a result, vegetation
foliage cover is generally greater than treed land covers found
in the lower portions of the watershed (e.g., peat plateaus).
Upland tree species predominately include a dense coverage
of trembling aspen (Populus tremuloides), white spruce (Picea
glauca), Alaskan birch (Betula neoalaskana), and jack pine (Pi-
nus banksiana).

III. METHODS
A. RADARSAT-2 Imagery

For this study, four 25 km x 25 km C-band RADARSAT-2
SAR scenes (see Table I) were acquired over the Scotty Creek
watershed. Two scenes were acquired in the summer of 2012
(July 22 and 31) and two in the summer of 2013 (August 26
and 27). All scenes were acquired in a RADARSAT-2 fine-
quad (FQ) polarimetric beam mode at varying incidence angles
(~19°,23°,48°, and 46°) and in a single look complex format.
All FQ scenes were illuminated in an ascending (right-looking)
satellite orbit with 5.2 m x 7.6 m (range x azimuth) resolution.
In this paper, RADARSAT-2 scenes will be referred to based on
their beam mode acquisition (as shown in Table I).

1) Polarimetric SAR Data Processing: All RADARSAT-2
images were preprocessed using PCI Geomatica 2013 software
(see Fig. 3). POLSAR datasets were first ingested into the soft-
ware (in PCIDSK format) and then filtered witha 5 x 5 low-pass
mean (boxcar) filter to suppress speckle noise and to increase
the effective number of looks of the single-look SAR data to 25.
The boxcar filter algorithm preserves polarimetric information
and operates in the spatial domain by replacing the center pixel
in a moving window with the average of pixels in the assigned
window size.

Filtered SAR images were then prepared for polarimetric
dataset extraction by first converting to an appropriate matrix
format. The symmetrized covariance (C3) matrix was used for
extracting the HH, HV, and V'V linear intensity channels, where
H refers to horizontally polarized and V refers to vertically
polarized. The VH linear intensity channel was not extracted,
as the reciprocity theorem states that the information supplied
by the HV channel is identical to VH. Pixel values of the lin-
ear intensity images also underwent radiometric calibration to
produce dB values of sigma nought (¢°) using the equation:

UO (dB) = 1010g10 (Ufinear) . (1)

Polarimetric decompositions were then applied to the filtered
SAR imagery for identifying dominant backscattering mecha-
nisms of peatland types and for the extraction of meaningful de-
composition parameters. This research explored the Freeman—
Durden [31] and Cloude—Pottier [30] decomposition methods,
two of the most frequently applied methods for land cover inter-
pretation (e.g., [33], [46]-[49]). The Freeman—Durden decom-
position was used to partition the backscattering for each image
pixel from the C3 matrix into the following scattering mecha-
nisms: 1) double-bounce scattering, 2) volume scattering, and
3) rough-surface scattering. The Cloude—Pottier decomposition
was then used to extract the entropy (H), anisotropy (A), and al-
pha angle (a) parameters from the symmetrized coherency (T3)
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Target

Class Permafrost Description

Ground Photo Overhead Photo

Bog Absent Flat, featureless, Sphagnum
dominated surface with a
water table close to the
surface. Sparse ericaceous
shrubs, graminoids, and
small forbs are often

present.

Absent Broad channels with a thick
floating  vegetation mat.
These features often have
sparse cover or Larix
laricina trees or Betula
shrubs and have a diverse
collection of non-vascular
plants, graminoids, and
forbs.

Fen

Plateau Present Raised peat surface with a
relatively open  Picea
mariana canopy. Ground
surface is covered with
Sphagnum  and  feather
mosses and lichen with a
layer of ericaceous shrubs

and forbs.

Well-drained mineral
deposits  with a closed
canopy forest comprised
largely of Populus
tremuloides Picea
glauca.

Upland Present

and

Water Absent Open surface water bodies

such as lakes.

Fig. 2. General descriptions and photographs of Scotty Creek land covers.

TABLE I
RADARSAT-2 IMAGERY DETAILS

Acquisition Date Polarization Beam Mode  Central Inc. Angle Orbit

22/07/2012 HH, HV, VH, VV FQ1 19.4° Ascending
31/07/2012 HH, HV, VH, VV FQ30 48.1° Ascending
26/08/2013 HH, HV, VH, VV FQ27 45.8° Ascending
27/08/2013 HH, HV, VH, VV FQ4 23.1° Ascending

matrix. H characterizes the amount of mixing between scattering
mechanisms (eigen values), with single scattering mechanisms
associated with values close to 0, and equal scattering mixes

associated with values close to 1. A characterizes the amount
of mixing between the second and third scattering mechanisms,
where a value of 0 indicates equal proportions, and values close
to 1 indicate that the second mechanism dominates. o ranges
from 0° to 90°, with low values (<40°) representing surface scat-
tering, intermediate (40° to 52.5°) representing double bounce,
and high (>52.5°) values indicating volume scattering. A is
most meaningful for low values of H. When H is close to 0,
A values of 0° denote single-surface scattering, values of 45°
refer to volume (dipole) scattering, and values of 90° indicate
double-bounce scattering.
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5 x 5 Boxcar
speckle filtering

Import to
PCIDSK file

RADARSAT-2 Fine
Quad-Pol Imagery

Angular Second Moment
Contrast
Variance

Correlation
Entropy
Inverse Difference Moment

Cloude-Pottier
Decomposition

Matrix

Conversion

T3

1471

C3

Freeman-Durden
Decomposition

Entropy Rough Surface ¢°HH
Anisotropy Double Bounce o°HV <
Alpha Volume Scattering c°VV

Testing
Data

Confusion
Matrix

Fig. 3. Flowchart of polarimetric SAR processing for peatland classification.

In addition to linear intensities and polarimetric decomposi-
tion parameters, image texture information was also extracted
for all pixels within each unfiltered RADARSAT-2 FQ image.
Unfiltered images were used because of concerns with the loss
of textural information from the application of SAR image filters
[36]. Texture values were extracted from the total power (TP)
of the SAR signal. The TP of an SAR image equals the span
(i.e., sum) of the C3 matrix. Image texture describes the spa-
tial arrangement and variation of patterns among image pixels
within an image, and has shown to improve land cover classifi-
cations in wetland environment [S0]-[52]. It, therefore, provides
quantitative properties of smoothness, coarseness, and regular-
ity of image pixels. The texture measures for this study were
based on second-order statistics computed from the grey level
co-occurrence matrices (GLCM). The GLCM can be defined as
a tabulation of how often different combinations of pixel values
(grey levels) occur throughout an image. Haralick et al. [53]
introduced 14 statistical parameters that quantify image texture;
however, the literature indicates six as being most relevant: an-
gular second moment, contrast, variance, correlation, entropy,
and inverse difference moment [52]. Therefore, these texture
parameters were tested for image classification improvement.
Texture values were extracted at a 5 x 5 pixel window, consis-
tent with the filtering window applied to SAR imagery.

Orthorectification
(LiDAR DEM)

Dual-Angle
Classifications

Geometric
Correction

Training
Data |

Single-Date
Classifications

All extracted SAR datasets from the RADARSAT-2 FQ im-
ages were then orthorectified to provide terrain correction,
due to varying projection between image and ground coordi-
nates. The orthorectification process was completed with the
PCI Geomatica 2013 Orthoengine extension. Images were cor-
rected to a 2 m resolution airborne LIDAR DEM, collected by
Hopkinson et al. [55], and using the bilinear interpolation re-
sampling method, which incorporates the values of the four
nearest input cell centers to determine the final value on the
output raster. The MDA supplied rational function math model
was also used for orthorectification, rather than manually col-
lected ground control points. The extension’s rational functions
math model builds a correlation between an image’s pixels and
their ground locations. Images were then processed (geocoded)
to UTM NAD 1983 with a postprocessing cell resolution of ~8
m.

B. Supervised Peatland Classifications

Linear intensities, decomposition parameters, and image tex-
tures were evaluated first in isolation (see Fig. 4) and then in
combination to assess their contributions to peatland type iden-
tification. Lastly, datasets from large and small incidence angle
imagery were combined for testing a dual-angular classification
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Fig. 4. Composites of SAR datasets at low and high incidence angles.
(a) Linear intensities with small (left) and large (right) angle scenes, (b)
Freeman—Durden parameters with small (left) and large (right) angle scenes, and
(c) Cloude—Potter parameters with small (left) and large (right) angle scenes.
Numbers indicate (1) bogs, (2) fen, (3) open water, and (4) uplands.

approach. The low temporal differences between images permit-
ted this assessment, as the FQ1 and FQ30 scenes were captured
nine days apart, and the FQ4 and FQ27 scenes were captured one
day apart. All classifications required the development and in-
put of multiband files, which were dependent on the assessment
being completed. Multiband rasters were created with Exelis
ENVI 4.8 software using the layer stacking toolbox.

To complete classifications, a support vector machine (SVM)
supervised classifier (Exelis ENVI 4.8 software) was selected.
First described by Vapnik [56], SVM classifiers are a super-
vised nonparametric statistical learning technique that operates
by finding a hyperplane that separates the remotely sensed data
into a predefined number of classes. The hyperplane is defined as
the decision boundary that minimizes misclassifications based
on the optimal separation of data within the feature space. Fun-
damental to the optimal hyperplane technique are the support
vectors. Support vectors are the data points closest to the hyper-
plane that lie on the margin boundaries and are critical elements
of the training set [57].

A Gaussian radial basis function kernel algorithm for the
SVM was chosen because it has shown to handle more complex
nonlinear class distributions, and is defined by the following
equation:

K (z,y) = exp(—yllz — y||*) )
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TABLE II
NUMBER OF PIXELS USED FOR TRAINING AND TESTING

Target Class ~ Training Pixels  Testing Pixels
Bog 1339 1313
Fen 1344 1309
Plateau 1416 1241
Upland 1269 1468
Water 1350 1361

where K (x, y) defines the kernel, x and y are the data being sep-
arated, and + is the gamma parameter. The  parameter defines
how strong a single training example (i.e., one digitized target)
influences the classification process, and is therefore the width
of the kernel function. v values for each image classification
were the inverse of the number of bands (datasets) in the input
image stack.

1) Training and Testing Data: Digitized polygon boundaries
of peatland types used for training and testing were predom-
inantly chosen based on highly accurate classification maps
of Scotty Creek developed by Chasmer et al. [S8], as well as
GPS (Garmin eTrex) collected spatial information from over-
head (Cessna 206 aircraft) and field surveys completed in Au-
gust 2012 and May 2013. The Chasmer et al. [58] land cover
maps were developed using a decision-tree classification ap-
proach from the fusion of airborne LiDAR and high-resolution
WorldView-2 multispectral imagery. Chasmer et al. [58] used
topographic derivatives and vegetation structural and spectral
characteristics to produce classification accuracies between 88%
and 97%, depending on land cover type. These accuracies were
obtained by comparing with field surveyed (differential GPS)
waterline extent of land covers.

Based on the described datasets, training and testing poly-
gons were carefully digitized for SAR images for forested up-
lands, peat plateaus, flat bogs, channel fens, and open-surface
water using ArcMap (ESRI ArcMap 10.1). Digitized targets
were applied with an inward buffer of ~8 m (1 postprocessed
RADARSAT-2 SAR pixel) or greater (dependent on image in-
terpretation) to account for mixed pixel edges. This was also
done to reduce speckle-related fluctuations in the backscattered
data. Digitized polygon targets were randomly split (50:50) for
the training and testing of supervised SVM classifications (see
Table II). Testing sites used to validate SAR classifications were
converted to regions of interest (ROI) in ENVI for developing
confusion matrices—confusion matrices allow for visualization
of a classifications performance by summarizing the relation-
ship between two sources of information: 1) the classified image
(i.e., the predicted class), and 2) ground-truthed data (i.e., the
actual class). The confusion matrix tool in ENVI pairs ROIs
with the land classes of a classification to show the percentage
of ROI pixels that were or were not contained in a resulting
class. Statistical assessments derived from the confusion matri-
ces included the following: overall image classification accuracy
(correctly classified pixels/total number of pixels), kappa coef-
ficient (a measure between actual agreement and agreement by
chance) producer’s accuracy (correctly classified pixels for a
given class/total number of pixels for that class as indicated
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TABLE III
FIELD SURVEYED 0-5 CM DEPTH VOLUMETRIC SOIL MOISTURE (%)
COINCIDENT WITH SATELLITE OVERPASSES

Plateau Bog Fen
Sampling Date  Overpass Beam  Average Soil Average Soil Average Soil
Mode Moisture Moisture Moisture
22/07/2012 FQ1 9.74 80.63 70.27
31/07/2012 FQ30 12.30 69.79 52.07
26/08/2013 FQ27 15.15 79.78 67.32
27/08/2013 FQ4 26.46 84.43 79.78

Note: 156 measurements were taken on each date.

from the digitized ground-truthed reference data), and user’s
accuracy (correctly classified pixels for a given class/all pixels
classified as that class) [59]. Producer’s accuracy quantifies how
well a certain area can be classified (omission error), whereas
user’s accuracy quantifies the reliability of classes in the classi-
fied image (commission error).

2) In Situ Soil Moisture Measurements: Soil moisture mea-
surements at 0—5 cm depth were also acquired coincident with
RADARSAT-2 overpasses. Satellite-based SAR backscatter can
be related to surface moisture due to the contrast of dielec-
tric constants of wet and dry surfaces [60], [61], making SAR
ideal for observing hydrologic patterns in wetland environment.
Therefore, soil moisture measurements assisted in the analysis
and interpretation of classification results. Field measurements
were conducted with Stevens Hydra Probe (Stevens Water Mon-
itoring Systems, Inc.) and ML2x Delta-T Theta Probe (Delta-T
Devices, Inc.) sensors and calibrated to <0.05 RMSE using
oven-dying techniques. A total of 156 surface measurements
were taken for each SAR overpass within a 140 m x 500 m
sampling grid (20 m spacing) that spanned open bogs, channel
fens, and permafrost plateaus. Table III presents the average
field measured volumetric soil moisture for coincident over-
passes by landcover class. Note that the wetland (bog and fen)
measurements were often near saturation, a result of the water
table being sufficiently close to the ground surface throughout
most of the year, which satisfies the definition of “wetland”
[62]. Additionally, high water tables within sampled wetlands
remove the concern around the SAR signal penetrating deeper
than 5 cm (the depth of the soil moisture sampling probe) in
organic soils with high porosity, as the signal response is largely
controlled by the dielectric from the (mostly) saturated con-
ditions. Peat characteristics of plateaus, in contrast, typically
have higher bulk density, and therefore this concern is reduced
amongst these land covers with C-band SAR penetration.

IV. RESULTS AND DISCUSSION

A. Classifications Using Linear Intensities

Linear intensity channels (c°HH + ¢°HV + 0°VV) were
first tested in isolation for target identification using each FQ
RADARSAT-2 image. Results indicated that operationally suit-
able wetland classification accuracies (>70%) can be achieved
with a multipolarization SAR sensor in this peatland environ-
ment, however obtaining this result is beam mode dependent
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as several classifications were <70% overall accuracy (see Ta-
ble IV). When using linear intensities only, the small angle FQ1
image achieves the highest overall accuracy of 77% (0.71 kappa
coefficient). This result supports previous studies indicating that
small incidence angle SAR images (<31°) are optimal for bo-
real wetland mapping [63]. This in part because SAR sensors
operating at small incidence angles better penetrate short shrub
wetland vegetation found in bogs and fens, whereas observation
at large incidence angles results in increased canopy attenuation
and scattering due to the viewing geometry. This produces a
backscattering response more similar to upland or plateau tar-
gets. However, while small angle SAR images were found to
produce better results than large angle SAR images, the fact that
the FQI1 linear intensity classification outperformed the FQ4 im-
age by 9% suggests that factors other than the minimal difference
in the incidence angle influenced the identification ability. To
account for this, surface soil moisture measurements acquired
during field sampling campaigns coincident with RADARSAT-
2 overpasses were used to assist in the interpretation of the radar
response. Surface conditions during the FQ4 acquisition were
found to be vastly wetter over nonwetland land cover types (26%
volumetric soil moisture) than during the FQ1 acquisition (10%
volumetric soil moisture), and moisture measurements across
fens and bogs were also drier for the FQ1 image acquisition. We
hypothesize that contrasting dielectric between mostly saturated
wetland surfaces and drier plateaus and uplands enhanced target
separation for the FQI image. Therefore, although the contrast
in results could be attributed to the variation in image beam
modes, it is important to consider dynamic surface conditions
and incorporate ancillary information (e.g., precipitation data)
when available to assist in the interpretation of classification
results.

When using only linear intensities, wetland classes were best
identified with small angle imagery. Bogs were best classified
with the FQ1 image, achieving a 95% producer’s accuracy,
whereas fens were best classified with the FQ4 image, achiev-
ing a 74% producer’s accuracy (see Table IV). Bogs were easily
identifiable with the FQ1 image, likely because of the high 0 °HH
backscatter from a combination of wet and rough peat surface
conditions, which is very distinguishable in Fig. 4(a). However,
classifications using only linear intensities produced poor differ-
entiation between forested uplands and peat plateaus, indicating
that C-band wavelength SAR had difficulty in discerning conif-
erous and deciduous components such as leafs, branches, and
stems. Nevertheless, the FQ1 SAR image was able to classify
peat plateaus with 81% producer’s accuracy. This indicates that
C-band SAR can, to some degree depending on beam mode
selection, discriminate scattering events of plateaus and their
typically black spruce (P. mariana) dominated surfaces from
deciduous covered uplands. Open-surface water was identified
with 100% producer’s accuracies with all beam modes.

Linear backscatter intensity classification results are com-
parable to other studies, further supporting for the use of
C-band SAR sensors over boreal peatland dominated environ-
ment. Li et al. [63] achieved classification producer’s accuracies
of ~80-86% for open and treed peatland bogs; however, their
procedure included the addition of multispectral imagery and
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TABLE IV
OVERALL CLASSIFICATION ACCURACIES (%) AND KAPPA COEFFICIENTS (/K') REPORTED FOR EACH SAR IMAGE, USING A SINGLE IMAGE APPROACH.
PRODUCER’S ACCURACIES (%) FOR PEATLAND TYPES ARE ALSO REPORTED

Beam mode Datasets Bog Fen Plateau Upland ~ Water  Overall Accuracy K
FQ1 Linear Intensities 958 653 81.1 46.2 100.0 77 0.71
Freeman—-Durden 96.8 639 81.8 36.9 100.0 75 0.69
Cloude—Pottier 979 557 19.0 58.2 98.1 66 0.58
Textures 68.1 21.8 53.5 13.1 32.1 37 0.22
Linear + Freeman—Durden 96.5 63.3 81.4 48.8 100.0 77 0.72
Linear + Cloude—Pottier 96.5 615 80.5 48.4 100.0 71 0.71
Linear + Both Decompositions 96.7 61.7 79.2 46.8 100.0 76 0.70
Linear + Textures 96.4 57.3 81.7 47.0 100.0 76 0.70
Linear + Decompositions + Textures ~ 96.8 57.8 82.1 47.5 100.0 76 0.70
FQ4 Linear Intensities 949 743 50.2 254 100.0 68 0.60
Freeman—-Durden 946 769 50.2 26.7 100.0 69 0.61
Cloude-Pottier 90.7  22.1 53.6 59.3 98.1 65 0.56
Textures 375 2438 69.7 19.1 81.1 46 0.33
Linear + Freeman—Durden 948 755 51.6 25.8 100.0 69 0.61
Linear + Cloude—Pottier 95.6  76.7 51.7 30.7 100.0 70 0.63
Linear + Both Decompositions 95.5 77.4 50.8 322 100.0 71 0.63
Linear + Textures 949 712 53.1 25.9 100.0 70 0.62
Linear + Decompositions + Textures ~ 95.8  76.5 53.5 314 100.0 71 0.64
FQ27 Linear Intensities 68.6 543 66.1 36.1 100.0 65 0.56
Freeman-Durden 714 603 60.7 39.8 100.0 66 0.58
Cloude—Pottier 53.1 28.8 443 0.0 78.2 40 0.26
Textures 9.7 50.0 82.4 6.9 100.0 49 0.37
Linear + Freeman—Durden 702 578 65.9 39.1 100.0 66 0.58
Linear + Cloude—Pottier 67.4 61.1 64.6 41.0 100.0 66 0.58
Linear + Both Decompositions 67.4  61.7 64.6 423 100.0 67 0.59
Linear + Textures 69.7  51.1 62.8 39.3 100.0 64 0.56
Linear + Decompositions + Textures ~ 67.9  59.9 63.8 40.2 100.0 67 0.58
FQ30 Linear Intensities 62.5 62.4 63.3 17.3 100.0 60 0.51
Freeman-Durden 60.6  69.6 62.8 20.1 100.0 62 0.53
Cloude—Pottier 29.7 540 41.5 0.0 70.7 38 0.24
Textures 149 419 54.0 21.0 100.0 46 0.33
Linear + Freeman—Durden 629 673 64.9 21.2 100.0 63 0.53
Linear + Cloude—Pottier 64.0 692 65.5 20.3 100.0 63 0.54
Linear + Both Decompositions 64.1 705 65.3 20.1 100.0 63 0.54
Linear + Textures 69.0  56.6 58.5 242 100.0 61 0.52
Linear + Decompositions 4 Textures ~ 68.2  63.0 63.7 22.4 100.0 63 0.54

elevation data. Baghdadi et al. [18] confirmed that multipolar-
izations are necessary for achieving optimal results with active
microwave sensors by demonstrating unique sensitivities of each
linear channel to peatland types. For instance, they found c°HV
most suitable for separating forested from nonforested targets,
and 0°HH to be very sensitive to open wetlands due to moisture
conditions. Their overall classification accuracies were 74% for
o°HH alone, 76% for c°HV alone, and 59% for ¢°VV alone.
Santoro et al. [64] also found oy, to show strong contrast be-
tween mature forest stands and open areas such as clear-cuts
in boreal Sweden. Morrissey and Livingston [65] classified a
complex mosaic of forests, fens, and bogs amongst other land
cover types, with C-band obtaining an overall accuracy of 89%.

B. Classifications Using Polarimetric Decompositions

The Freeman—Durden and Cloude—Pottier decompositions
were used to decompose the fully polarimetric SAR data into
their respective components. Decomposed components were
then tested alone to determine their ability to identify peat-
land types. Interpretations of decomposition components and
their respective scattering mechanisms assisted in classification

analysis. It was established that the Freeman—Durden decompo-
sition performed better in this environment than the Cloude—
Pottier decomposition, as the volume, double-bounce, and
rough-surface scattering contributions could better distinguish
peatland types.

Freeman—Durden decompositions demonstrated that a given
target’s dominant scattering contributions are quite dependent
on the imaging incidence angle, and that these contributions
are most clearly differentiated with small angle imagery (see
Fig. 5). For example, bogs were differentiated very well from
fens with the FQ1 scene, as they displayed relatively high quan-
tities of rough-surface scattering (83%) and low quantities of
volume scattering (15%), whereas fens were dominated by vol-
ume scattering (66%). However, fens did share overlapping scat-
tering signatures with plateaus and uplands. This is a product
of dense vegetation coverage found on uplands and plateaus,
and mostly moderate coverage with fens; therefore, their rates
of volume-scattering are relatively high regardless of illumi-
nation angle (>57%). As expected, the separation of plateaus
from uplands was also difficult; however, small angle imagery
did prove better than large angle imagery, albeit only marginally.
The FQ4 beam mode, in particular, showed better differentiation
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Fig. 5.

of multiple-scattering events from these scenes, as uplands had
12% greater volume-scattering contributions than plateaus—it
is possible that the moisture conditions during the time of the
FQ4 image acquisition significantly influenced this result. Nev-
ertheless, it is evident that physical geometric characteristics of
vegetation stands found in upland environment (e.g., deciduous)
and plateaus (e.g., coniferous) produces minor observable dif-
ferences in scattering interactions regardless of the SAR imag-
ing configuration. Although it must also be considered that the
Freeman—Durden decomposition, like many other model-based
decompositions, may be over estimating the volume scattering
component of treed uplands and plateaus due to the occurrence
of negative eigen values. The testing of other decompositions
(e.g., [66], [67]) that account for this may improve results in
this instance. Surface water targets were by and far the most
contrasting land cover type. This is because surface water im-
parts minimal scattering from specular reflection, resulting in a
very dark tonal upon visual inspection of the SAR image. Fur-
thermore, any backscatter from water that was returned to the
sensor could be attributed to Bragg scattering (a result of wind),
although this was mostly absent due to open water targets being
very calm.

Using the Cloude—Pottier decomposition, alpha-entropy fea-
ture space plots were developed for relating peatland types
to physical scattering mechanisms (see Fig. 6). Alpha-entropy
plots are divided into a series of separating boundaries referred
to as sub—zones which assist in interpreting specific scattering
characteristics of targets, as defined by Cloude and Pottier [30].
Similar to the Freeman—Durden decomposition, peatland types
displayed more contrasting signatures with small angle SAR
imagery.

With FQ1 and FQ4 images, bog targets existed primarily in
zone 9, a product of low entropy (H < 0.5) and alpha angles
(<42°). Targets that fall in this segmented zone characteristi-
cally exhibit single-scattering events such as surface scattering.
Open-surface water targets also fell within this zone with small
angle imagery because of specular surface scattering. Densely-
and moderately-treed targets (e.g., uplands, plateaus, and fens)
predominately fell in zones 5 and 6. Zone 5 indicates medium en-
tropy vegetation scattering caused by a dominant double-bounce
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Freeman—Durden volume, double-bounce, and rough-surface scattering contributions of land cover targets.

(cylinder) type scattering mechanism whereas zone 6 reflects an
increase in entropy caused by greater terrain surface roughness
and due to canopy propagation effects [30]. Although plateaus
and uplands mostly fell in zone 6, a number of sample targets
also resided in zone 5. However, fen targets were mostly in zone
5, which is expected due to sparser vegetation cover. At large
incidence angles, scattering signatures became extremely ag-
gregated as all targets fell within zones 5 and 6. This degree of
signature overlap was unexpected, especially for open-surface
water targets that induce specular reflection. The conglomer-
ation of targets with large angle images in the alpha-entropy
zone-plots help explain the poor classification results at those
respective incidence angles.

Following the analysis of decomposition parameters, the
Freeman—Durden and Cloude—Pottier techniques were then
tested for their contributions to classification potential. The FQ1
SAR image produced the best result with the Freeman—Durden
decomposition, achieving a 75% overall accuracy (0.69 kappa
coefficient) (see Table V). Surface water was best identified
with this beam mode and decomposition (100% producer’s ac-
curacy), followed by bogs (96.8% producer’s accuracy) and
plateaus (81.8% producer’s accuracy). A greater degree of con-
fusion was found with fen and upland targets (<64% pro-
ducer’s accuracies), as the decomposition indicated an overlap
of scattering contributions. Regardless, this was a 9% over-
all improvement over the most successful classification using
the Cloude—Pottier decomposition (66% overall accuracy with
the FQ1 image). Comparable decomposition performances have
been reported for wetland mapping [33]. We also established
that for both decomposition techniques, accuracy was reduced
as incidence angle became larger. Specifically, results demon-
strated that the Cloude—Pottier decomposition parameters for
both FQ27 and FQ30 images (<40% overall accuracy) resulted
in confusion due to significant overlap of scattering properties
among targets (see Fig. 6).

C. Classifications Using Image GLCM Textures

Image GLCM textures in isolation produced unsatisfac-
tory peatland classifications (see Table IV). Classifications,
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regardless of beam mode, produced overall accuracies <50%.
The FQ27 image produced the highest overall accuracy using
image textures with a 49% overall accuracy (0.39 kappa coeffi-
cient). With small angle SAR images (FQ1 and FQ4), textures
were the least successful SAR dataset in isolation, as overall
accuracies were considerably lower than when using linear in-
tensities or decompositions only. With large angle SAR images
(FQ27 and FQ30), textures produced results only better than
the Cloude—Pottier decomposition. Image textures were not as
useful for identifying fen and upland targets, although mod-
est success was found in classifying plateaus with large angle
imagery (82% producer’s accuracy with FQ27) and bogs with
small angle imagery (68% producer’s accuracy with FQ1). Suc-
cess was achieved in surface water identification again though,
as producer’s accuracies of 100% were achieved with large angle
FQ27 and FQ30 images. This is because water can be considered
texture-less in SAR imagery due to little to no spatial variabil-
ity, whereas in contrast, vegetated terrains represent a medium
texture class [68].

It was hypothesized that a combination of image textures
would produce better classification results in this environment,
as previous research has shown SAR image textures to be valu-
able in wetland type identification [36], [52]. Arzandeh and
Wang [36], in particular, were able to achieve 70% overall ac-
curacy of their study site using SAR textures, as well as 80%

producer’s accuracy for wetland types, a remarkably better result
than in our study. However, to attain this result, their classifi-
cation hierarchy approach was to simply differentiate wetland
(e.g., marsh and swamp) from nonwetland terrain (e.g., urban,
agriculture, etc.), a task that SAR is very capable of performing.
They also experimentally tested various window sizes (from
3 x 3to 25 x 25) for identifying an optimal texture dataset. As
our study did not perform an exhaustive examination of window
sizes, the potential for improving textural contributions to classi-
fication accuracy in this environment could be further explored.
Racine et al. [69] also used SAR image textures in a peatland
environment and classification results were more comparable
to our results. They found that SAR textures (extracted using
a 15/15 window) were able to achieve 36% overall accuracy
for open peatland, forested peatland, water, and mineral targets.
This in combination with the results from our study suggests that
image textures derived from SAR imagery are not beneficial for
peatland mapping, especially in subarctic boreal wetland dom-
inated environment where interclass wetland differentiation is
challenging.

D. Classifications Using Additively Combined SAR Datasets

Following the testing of unique SAR datasets in isolation,
we then combined SAR datasets in an additive layer stack-
ing approach for potentially improving peatland identification.
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TABLE V
OVERALL CLASSIFICATION ACCURACIES (%) AND KAPPA COEFFICIENTS (K) USING A DUAL-ANGULAR APPROACH.
PRODUCER’S ACCURACIES (%) FOR PEATLAND TYPES ARE ALSO REPORTED

Beam modes Datasets Bog Fen Plateau Upland ~ Water  Overall Accuracy K
FQ1 Linear Intensities 963 753 80.0 59.1 100.0 82 0.77
+ Freeman—-Durden 97.1  79.8 82.1 56.4 100.0 83 0.78
FQ30 Cloude—Pottier 963  64.7 27.2 50.7 99.1 68 0.60
Textures 723 349 66.7 23.9 99.5 59 0.49
Linear + Freeman—Durden 96.8 76.3 80.9 63.5 100.0 83 0.79
Linear + Cloude-Pottier 974 774 81.7 62.5 100.0 83 0.80
Linear + Both Decompositions 974 779 81.3 63.2 100.0 84 0.80
Linear + Textures 96.8 75.1 80.1 64.7 100.0 83 0.79
Linear + Decompositions + Textures ~ 97.1 76.7 80.2 68.4 100.0 84 0.80
FQ4 Linear Intensities 96.3 87.1 529 56.8 100.0 79 0.73
+ Freeman—-Durden 934 852 51.7 54.3 100.0 77 0.71
FQ27 Cloude-Pottier 934 454 50.0 39.1 99.4 65 0.57
Textures 569 449 58.7 25.6 100.0 57 0.46
Linear + Freeman-Durden 96.5 87.7 56.9 57.7 100.0 80 0.75
Linear + Cloude—Pottier 95.8 88.3 57.9 58.7 100.0 80 0.75
Linear + Both Decompositions 96.0 88.6 57.8 59.4 100.0 80 0.75
Linear + Textures 96.0  86.6 57.2 56.2 100.0 79 0.74
Linear + Decompositions + Textures ~ 96.1  87.3 61.4 56.4 100.0 81 0.76

Adding the Freeman—Durden or Cloude—Pottier decompositions
to linear intensities produced ~1-3% overall accuracy improve-
ments, apart from the FQ1 image in which no improvement was
found (see Table IV). Combining both decompositions together
with linear intensities also produced marginal improvements for
most images, although a decrease in accuracy was found with
the FQ1 image. It is understandable that little improvement was
found with decompositions, as minimal double-bounce scatter-
ing was induced for all land covers. This suggests that there is not
a dominant scattering mechanism for each class, thus assigning
a classification based mostly on volume and surface scattering
contributions is challenging. Overall accuracies were slightly
reduced (~1%) with the FQ1 and FQ27 images when image
textures were added to linear intensities, but improved when
added to the FQ4 and FQ30 images (~1-3%). Results indicated
that improvements were very modest for all dataset additions
using single-date SAR imagery, though the best overall classi-
fication accuracies for the FQ4, FQ27, and FQ30 images (71%,
67%, and 63% overall accuracies) were achieved when stack-
ing all linear intensity, decomposition, and texture information
together. The FQ1 image was the only exception, as this beam
mode found linear intensities only to produce a better over-
all classification (77% overall accuracy, 0.71 kappa coefficient)
than with all collective datasets. Moreover, because overall clas-
sification improvements were minimal throughout the additive
process, no particular land class had vastly enhanced identifica-
tion results with added SAR datasets.

E. Classifications Using a Dual-Angular Approach

The dual-angular classification approach provided the most
significant improvements in peatland type identification (see
Table V). Several classifications achieved overall accura-
cies >80% using a combination of dual-angular imagery.
Analogous to results observed with single-angular classifica-
tions, the Freeman—Durden decomposition outperformed the

Cloude—Pottier decomposition (>77% overall accuracies with
Freeman—Durden components). Image textures performed
poorly again (<59% overall accuracies), and generally pro-
duced little to no improvements as an additive dataset to linear
intensities (~0—-1% accuracy improvements). The highest over-
all accuracy (84% overall accuracy and 0.80 kappa coefficient)
was achieved when combining all FQ1 and FQ30 linear inten-
sities, polarimetric decomposition, and image texture datasets
together [see Fig. 7(a)], although a similar result was achieved
without image textures, further demonstrating that this informa-
tion is unnecessary. This was a 7% overall accuracy improve-
ment over the FQI1 linear intensity-only classification, which
was the highest reported classification using only single-image
datasets. Merging the FQ4 and FQ27 linear intensities, polari-
metric decomposition, and image texture datasets also produced
a strong classification of the Scotty Creek watershed for those
respective dates, with a reported 81% overall accuracy and 0.79
kappa coefficient [see Fig. 7(b)].

Analysis of statistics generated from error matrices provides
a valuable understanding of a classifier’s performance. Full con-
fusion matrices were generated for the two dual-angular clas-
sifications that utilized all SAR datasets, as these represent the
best achievable results with their respective image combina-
tions (see Tables VI and VII). Common trends of target identi-
fication and confusion were observed from the error matrices.
First, both classifications indicated a very strong identification
of bogs (>96% producer’s accuracies), and less success with
fens (>76% producer’s accuracies). Fens were mostly misclas-
sified as upland environment, suggesting that the rate of multiple
scattering events from canopies and double-bounce scattering
between trees and perpendicular surfaces causes confusion with
upland targets when vegetation density is equivalent, or at least
partially similar. Plateau and upland targets in particular were
best identified with the FQ1 and FQ30 combined SAR datasets
(80% and 68% producer’s accuracies). Moreover, when these
upland and plateau target classes were misclassified, they were

Authorized licensed use limited to: University of Guelph. Downloaded on April 19,2022 at 17:43:42 UTC from IEEE Xplore. Restrictions apply.



1478

8

km

Fig. 7.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 10, NO. 4, APRIL 2017

[ Bog
- Fen
[ Piateau
B upiand
- Water

Image subsets of a high-density peatland region of Scotty Creek, classified using a dual-angular approach with linear intensity, decomposition, and texture

datasets in combination. (a) FQ1 + FQ30 (84% overall accuracy, 0.80 kappa coefficient) and (b) FQ4 + FQ27 (81% overall accuracy, 0.79 kappa coefficient).

TABLE VI
CONFUSION MATRIX (NUMBER OF PIXELS) FOR THE FQI1 + FQ30
DUAL-ANGULAR CLASSIFICATION PERFORMED WITH LINEAR INTENSITY,
DECOMPOSITION, AND TEXTURE DATASETS COMBINED.
PRODUCER’S AND USER’S ACCURACIES ARE REPORTED IN %

TABLE VII
CONFUSION MATRIX (NUMBER OF PIXELS) FOR THE FQ4 + FQ27
DUAL-ANGULAR CLASSIFICATION PERFORMED WITH LINEAR INTENSITY,
DECOMPOSITION, AND TEXTURE DATASETS COMBINED.
PRODUCER’S AND USER’S ACCURACIES ARE REPORTED IN %

Reference Data

Reference Data

Bog Fen Plateau Upland Water User’s Ac. Bog Fen Plateau Upland Water User’s Ac.
Bog 1276 12 9 19 0 96.9 Bog 1263 18 67 0 0 93.6
Fen 3 1005 3 158 0 85.9 Fen 28 1144 48 182 0 81.6
. Plateau 16 73 996 289 0 72.6 . Plateau 22 48 763 414 0 61.1
Classified Image ;1014 18 219 233 1005 0 68.1 Classified Image ;1014 0 99 363 872 0 653
Water 0 0 0 0 1361 100.0 Water 0 0 0 0 1361 100.0
Producers Ac. 97.1 76.7 80.2 684  100.0 Producers Ac. 96.1 87.3 61.4 594 100.0

Note: Overall accuracy = 84%, K = 0.76.

predominately mistaken for each other. This again is due to
comparable volume scattering events from canopy top-crown
interactions, as revealed by decomposition components (see
Fig. 5). This also indicates that additional frequencies (e.g.,
L- or P-bands) are likely necessary for improving forest stand

Note: Overall accuracy = 81%, K = 0.80.

differentiation, which is a contrasting notion to earlier work by
Rignot et al. [70]. However, vegetation density must be con-
sidered if multiband frequencies are to be explored for this, as
studies such as [71] have shown canopy penetrating L-band to
be sensitive to surface moisture under 3 kg m~2 in black spruce
(P. mariana) boreal forests.
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The dual-angular approach with C-band SAR shows over-
all promising applications as a high-accuracy tool, specifically
for the identification of saturated bogs, open water bodies, and
forested terrains in permafrost environment. This can be ex-
tremely valuable for monitoring the following key issues: 1) the
expansion of saturated bog terrain from permafrost thaw, and
2) the terrestrialization of open water bodies. In boreal environ-
ment such as Scotty Creek, research has revealed that horizontal
heat flows in thawing discontinuous permafrost produce consid-
erable land cover change [72]. This is vital at wetland—plateau
interfaces, where plateaus are subject to rapid permafrost degra-
dation and the subsequent conversion to saturated bogs. Using
SAR to identify the spatial expansion of bogs can potentially
be used to quantify areal extent of permafrost loss, in addition
to assisting in understanding the organic matter accumulation
and nutrient status of peatlands as permafrost continues to de-
grade [73]. Northern peatland environment is also beginning to
show signs of open water terrestrialization as peatlands encroach
lakes and ponds [74]. The capability to accurately delineate wa-
ter bodies with a cost-effective method such as SAR lends to the
potential for monitoring peat expansion under warming climatic
conditions.

V. CONCLUSION

The cold and poorly drained conditions of northern boreal
peatlands have resulted in the formation of thick soil carbon
reservoirs that are highly sensitive to surface disturbances such
as the thawing of permafrost. These reservoirs have the po-
tential to alter global atmospheric greenhouse gas composi-
tions and therefore have important implications on policy de-
velopment and initiatives for combating climate change. Accu-
rate monitoring and land cover change detection are necessary
for understanding these disturbances and subsequent release
of greenhouse gases from peatlands. Therefore, this research
investigated the contributions of linear backscatter, two polari-
metric decompositions, and image textures from polarimetric
RADARSAT-2 SAR imagery for classification of a peatland-
dominated subarctic environment.

This research provided an assessment of the contributions of
linear backscatter compared to advanced polarimetric decom-
positions and image textures for peatland-type classification.
Results demonstrated that when variables were assessed in-
dividually, multipolarized backscatter (¢c°HH, 0°HV, 0°VV)
generally produced comparable classification results to those
of the Freeman—Durden and Cloude—Pottier decompositions re-
gardless of the incidence angle. When combining additional
polarimetric and texture datasets into classifications involving
linear backscatter, the improvements were generally only minor.
However, results also show that dual-angular classifications con-
sistently outperform those of the single-angular approach. This
is largely a result of combining complementary scattering in-
formation from small and large incidence angle imagery, thus
becoming more sensitive to different peatland type properties.
In general, target classification was most successful with the
identification of isolated bogs and open water surfaces. Channel
fens, uplands, and plateaus were commonly misclassified with
each other to varying degrees, and the extent of misclassification
depended on the SAR beam mode. Variations in environmental
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and weather conditions during SAR image acquisitions may also
result in misclassification, as the sensitivity of C-band to heavy
rain and wet conditions is well documented (e.g., [75]-[78]).
The highest rate of misclassification was found with densely
treed targets such as uplands and plateaus. However, since they
were mostly mistaken for each other indicates that C-band SAR
can accurately separate treed from nontreed terrain based on
volume scattering contributions, but that confusion occurs when
attempting to distinguish one treed target from another. This ap-
pears to be independent of biomass or tree species, as upland
moraines are often deciduous or mixed forest whereas plateaus
are commonly stands of mature black spruce (P. mariana). The
application of multidate imagery spanning a large temporal pe-
riod could improve this separation with leaf-on and leaf-off con-
ditions [79]. The general confusion of tree type is less important
for mapping permafrost extent in subarctic boreal Canada. For
this reason, we concluded that C-band SAR is most applicable
as a tool for monitoring change in permafrost boundaries and
for terrestrialization of open water.

The implications of this research involve future sensor choice
and testing for wetland classification, particularly as new C-band
SAR sensors are available, such as RADARSAT-constellation
mission (RCM) and Sentinel-1. The assessment of polarimetric
contributions to image classification provides a unique assess-
ment of the benefit of exploiting such complex SAR datasets for
this application. It is suggested that future research over similar
landscapes investigate the contributions of multiband SAR im-
agery for assisting in the separation of treed land covers such as
uplands and plateaus from treed wetlands, as longer wavelengths
(e.g., L-band) provide increased penetration of canopy struc-
tures. For example, previous studies such as [19] detail the need
for L-band data for classification of fen types in high-latitude
regions. Furthermore, exploration into the seasonal timing ef-
fects of image acquisition may yield worthy results, as leaf-off
conditions from deciduous upland vegetation could assist in im-
proving overall mapping accuracies at C-band. An assessment
that combines imagery from varying hydrological states of the
same sites is also of interest, as temporal differences have often
been used to distinguish wetland types. Finally, further eval-
uation of the datasets and methodologies investigated in this
research over other wetland-dominated basins in the subarctic
should be explored.
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