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[1] Snow surface temperature (Ts) is important to the snowmelt energy balance and land-
atmosphere interactions, but in situ measurements are rare, thus limiting evaluation of
remote sensing data sets and distributed models. Here we test simple Ts approximations
with standard height (2–4 m) air temperature (Ta), wet-bulb temperature (Tw), and dew
point temperature (Td), which are more readily available than Ts. We used hourly
measurements from seven sites to understand which Ts approximation is most robust and
how Ts representation varies with climate, time of day, and atmospheric conditions (stability
and radiation). Td approximated Ts with the lowest overall bias, ranging from 22.3 to
12.6�C across sites and from 22.8 to 1.5�C across the diurnal cycle. Prior studies have
approximated Ts with Ta, which was the least robust predictor of Ts at all sites.
Approximation of Ts with Td was most reliable at night, at sites with infrequent clear sky
conditions, and at windier sites (i.e., more frequent turbulent instability). We illustrate how
mean daily Td can help detect surface energy balance bias in a physically based snowmelt
model. The results imply that spatial Td data sets may be useful for evaluating snow models
and remote sensing products in data sparse regions, such as alpine, cold prairie, or Arctic
regions. To realize this potential, more routine observations of humidity are needed.
Improved understanding of Td variations will advance understanding of Ts in space and
time, providing a simple yet robust measure of snow surface feedback to the atmosphere.
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1. Introduction

[2] The surface temperature of snow (Ts) is a critical fac-
tor in the snow energy balance and in land-atmosphere inter-
actions, modulating how much energy is used to warm or
melt a snowpack and how much energy is returned to the
atmosphere. In the literature, the term ‘‘snow surface temper-
ature’’ has been used to refer to two distinct yet related varia-
bles: radiant surface temperature (i.e., the ‘‘skin’’ of the
snowpack that emits longwave radiation to the atmosphere)
and thermodynamic surface temperature (i.e., the bulk tem-

perature of a thin layer at the snowpack surface). Radiant Ts

controls outgoing longwave radiation and regulates the near-
surface profiles of temperature and vapor pressure that influ-
ence sensible and latent heat transfer. Increases in thermody-
namic Ts drive the growth of snow grains, reducing snow
surface albedo and enhancing absorbed shortwave radiation
[Flanner and Zender, 2006]. Thermodynamic Ts is also
important for slab avalanche formation, as large diurnal tem-
perature fluctuations in near-surface snow layers can induce
kinetic metamorphism and form faceted snow grains [Arm-
strong and Armstrong, 1987; Birkeland, 1998; Birkeland
et al., 1998]. When combined with a vapor gradient directed
from the atmosphere to the snow surface, Ts can produce
surface hoar. When buried, faceted snow grains and surface
hoar can form weak layers in a snowpack [Stössel et al.,
2010]. Finally, radiant Ts is important for winter recreation
(e.g., downhill skiing and cross-country skiing races) [e.g.,
Wagner and Horel, 2011], as it has a nonlinear relationship
with surface friction [Colbeck, 1988].

[3] Despite its importance, Ts is rarely measured at exist-
ing observational networks [Bales et al., 2006]. For exam-
ple, in the western US, fewer than 2% of snow-measuring
automatic weather stations also measure radiant Ts

[Raleigh, 2013]. Thermodynamic Ts is typically measured
by avalanche centers via manual snow pit profiles, but these
measurements are generally limited in space and time (e.g.,
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daily or weekly). Thus, Ts is often acquired with remote
sensing or modeling. Satellite-based remote sensing of sur-
face emission at infrared wavelengths has yielded Ts data
sets, but atmospheric emission of longwave radiation com-
plicates this methodology [Duguay, 1993], and few studies
have validated remotely sensed Ts, as noted by Dozier and
Painter [2004]. In modeling applications, Ts has been esti-
mated with (1) empirical relationships that track hourly
[Marks et al., 1992; Brubaker et al., 1996] or mean daily
[Molotch, 2009] air temperature, (2) conceptual approaches
based on air temperature that incorporate radiative cooling
effects [Marsh and Pomeroy, 1996; Pohl et al., 2006], (3)
longwave-based psychrometric formulations [e.g., Ellis
et al., 2010], and (4) physically based approaches that solve
for Ts in the surface energy balance using analytic [e.g.,
Kondo and Yamazaki, 1990; Essery and Etchevers, 2004]
or iterative solutions [Outcalt, 1972; Outcalt et al., 1975;
Jordan, 1991; Tarboton and Luce, 1996]. Due to the inher-
ent scarcity of Ts observations, models generally lack vali-
dation of this important parameter. Instead, snow models
are typically evaluated only against the mass balance via
snow water equivalent (SWE) data [Essery and Etchevers,
2004], a practice which neglects the energy balance and
limits process-based understanding [Clark et al., 2011].
Depending on model selection, uncertainty in midwinter Ts

may be as large as 8–10�C [Slater et al., 2001; Essery
et al., 2013], yielding up to 40 W m22 of uncertainty in
longwave emitted to the atmosphere, and signifying prob-
lems in the modeled surface energy balance.

[4] In contrast to the above methods for estimating Ts,
Andreas [1986] hypothesized that the dew point tempera-
ture (Td) of air close to the snow surface approximates Ts.
The physical reason for this approximation is that snow
cover is a saturated surface, such that the vapor pressure (e)
of air close to the surface equals the saturation vapor pres-
sure (esat). Air reaches saturation at Td, and esat is a func-
tion of Ts alone; thus, Td close to the snow surface is
expected to be in equilibrium with Ts. Supporting this rea-
soning, U.S. Army Corps of Engineers [1956] notes that
‘‘The vapor pressure has a strong tendency to remain close
to that of the snow surface since the snowpack is both a
sink and a source for vapor pressure greater or less than
that of the snow. For air over a melting snowpack, the tend-
ency is thus toward a vapor pressure of 6.11 millibars (the
saturated vapor pressure at 32�F).’’ While Andreas [1986]
focused on Td, there exists a second saturation temperature,
the wet-bulb temperature (Tw) (see section 3), which is the
temperature at which an air parcel becomes saturated
through evaporative cooling. For an unsaturated air parcel,
Tw is always greater than Td. The relationship between Tw

and Ts has seen little attention in the literature.
[5] Andreas [1986] first supported his hypothesis with

theoretical analysis, which showed Td is representative of
Ts during periods with enhanced mixing (i.e., high wind
speed) or when the near-surface vapor pressure gradient
weakens (e.g., when eair comes into equilibrium with
esat(Ts)). He then demonstrated that different Ts measure-
ments generally corresponded to Td measurements 10 cm
above the snow surface during January 1984 at a field site
in Michigan. He compared Td to both thermodynamic Ts

(measured with thermistors and thermocouples 1–5 cm
below the snow surface) and radiant Ts (measured with an

infrared sensor). Based on his field measurements, he found
that approximation of Ts with Td was accurate to 61�C.
However, he found that Ts for all three sensors (infrared
sensor, thermistors, and thermocouples) was higher than Td

during sunny periods and assumed that solar heating had
biased the sensors.

[6] To date, the results of Andreas [1986] have seen lim-
ited application in snow hydrology research, perhaps
because Td measurements are rarely taken close to the
snow surface [Marks et al., 1992]. Temperature sensors
and hygrometers are typically installed at a standard height
2–4 m above the ground surface at a climate station, with
the height above the snow surface varying as the snow
depth fluctuates with accumulation, wind scour/deposition,
compaction, sublimation, and melt processes. Therefore, it
remains unknown how saturation temperatures at standard
height relate to Ts, how these relationships vary with local
conditions (i.e., boundary layer stability and radiation), and
whether they approximate Ts more reliably than air temper-
ature. There is also limited understanding of how well satu-
ration temperatures approximate Ts in other snow climates
within the cryosphere, as the relationship has only been
tested over snow cover in Michigan [Andreas, 1986] and
over polar sea ice [Andreas et al., 2002]. Finally, the
experiment of Andreas [1986] was confined to a single
month in midwinter, so it is unknown how this approxima-
tion varies throughout the entire cold season.

[7] The purpose of this paper is to test representations
of Ts with standard height measurements across a more
complete range of seasonally snow-covered environments,
climates, and seasons. We seek to know how accurately Ts

may be approximated with as few parameters as possible,
so as to make the results applicable to remote, snow-
dominant regions where meteorological observations are
often scarce. Humidity measurements are found at 35% of
stations in the western US [Raleigh, 2013], so they are
comparatively more abundant than Ts observations. We
specifically address three key questions: (1) How do
measurements of Ts compare to standard height dry bulb
(i.e., air) temperature (Ta), wet-bulb temperature (Tw), and
dew point temperature (Td)?, (2) How well does standard
height Td represent Ts climatically and diurnally?, (3)
How well does Td approximate Ts with variations in
atmospheric conditions (i.e., radiation and stability)?. We
address the above questions using measurements at seven
sites located across North America and Europe. To illus-
trate the relevance of these results to model evaluation,
we also compared Td measurements with those simulated
by a physically based snow model (SNTHERM) [Jordan,
1991] for both cases of best-available forcing data and of
biased forcing data.

[8] The approximation of both radiant Ts and thermody-
namic Ts are considered in this study. Radiant Ts is considered
in the surface measurement analysis while thermodynamic Ts

is considered in the modeling case study. The results related to
radiant Ts are most applicable to remote sensing applications
(see section 6). Both types of Ts are broadly relevant to snow
models and the calculation of surface fluxes, as some snow
models simulate radiant Ts (e.g., the Utah Energy Balance
[Tarboton and Luce, 1996]) while other models (e.g.,
SNTHERM) simulate thermodynamic Ts for the top snow
layer (with finite thickness).
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2. Sites and Data

[9] We selected study sites in wet and dry climates that
featured all surface observations required to test and com-
pare the Ts approximations (Table 1 and Figure 1). M�et�eo-
France provided an 18 year data set from the Col de Porte
site (CDP) in a subalpine maritime environment [Morin
et al., 2012]. The United States Army Corps of Engineers
Cold Regions Research and Engineering Laboratory
(CRREL) provided data at a low elevation, moist continen-
tal site (South Royalton Vermont, SRV) [Peck and Fiori,
1992]. The IP3 (Improved Processes and Parameterizations
for Prediction in Cold Regions) Research Network (http://
www.usask.ca/ip3/) provided data from stations in a
wet alpine environment (Opabin, OPB) [Hood and Haya-
shi, 2010] and a subarctic bog in the zone of discontinuous
permafrost (Scotty Bog, BOG) [Williams et al., 2013]. The
University of Calgary provided data from a cold grassland
prairie (Spy Hill, SPY) [Mohammed et al., 2013]. The Cen-
ter for Snow and Avalanche Studies (http://www.snowstu-
dies.org) provided data from paired sites in a dry
continental climate, including a subalpine site (Swamp
Angel Study Plot, SASP) and an alpine site (Senator Beck
Study Plot, SBSP). Although SASP and SBSP were located
in the same climate, they provided insights into windy
(SBSP) versus sheltered (SASP) locations. Mean Decem-
ber-January-February (DJF) temperatures at the sites
ranged from 20.90 to 222�C (Table 1).

[10] The study period depended on data availability at
each site, and ranged from 1 to 18 snow years (Table 1).
All sites recorded 30 min or hourly measurements of air
temperature, humidity, wind speed, snow depth, downwel-
ling shortwave and longwave radiation, and either infrared-
measured Ts or upwelling longwave radiation (i.e., from
the downward-pointing pyrgeometer on a net radiometer).
The meteorological measurements were made at a fixed
height above the ground at all sites except for CDP, where
operators adjusted the instrument heights weekly to main-
tain a consistent height above the snow surface [Morin
et al., 2012].

[11] Air temperature measurements were made with a
mechanically aspirated sensor at CDP and with naturally
ventilated sensors at the remaining six sites (Table 1). Natu-
rally ventilated temperature sensors may be subject to radia-
tive heating errors during days with high solar radiation and
low wind speeds [e.g., Kent et al., 1993; Huwald et al.,
2009]. Radiative errors tend to be higher over snow surfaces
than other land types because the high albedo of snow
directs additional energy to the temperature sensor [Huwald
et al., 2009]. For example, maximum radiative errors have
been documented in the 6.2–10�C range in the cryosphere
[Arck and Scherer, 2001; Georges and Kaser, 2002;
Huwald et al., 2009], compared to 3.4–4.0�C in oceanic
environments [Kent et al., 1993; Anderson and Baumgart-
ner, 1998] and 1.2–2.2�C in summer grasslands [Nakamura
and Mahrt, 2005; Mauder et al., 2008]. An auxiliary analy-
sis (see supporting information 1) quantified the radiative
errors at the SPY site using a sonic anemometer as reference
temperature, and tested four correction methods. The conclu-
sions of the Ts analysis did not change when three of the
four correction methods were applied, while the fourth cor-
rection method introduced a cold bias in the data. As a result,

we elected not to correct the temperature data from the natu-
rally ventilated temperature sensors. Furthermore, by not
correcting for radiative errors, the study remains relevant to
sites that lack the radiation data required to correct radiative
errors. In the western US, this amounts to over 75% of
snow-measuring stations [Raleigh, 2013].

[12] Sensors at each site measured Ts (i.e., radiant snow sur-
face temperature) either directly with an infrared sensor or
indirectly through measurement of upwelling longwave radia-
tion with a pyrgeometer. Upwelling longwave radiation was
converted to Ts using the Stefan-Boltzmann equation with
snow thermal emissivity (e) equal to 1, for consistency with
the published data set at CDP [Morin et al., 2012]. However,
we note that e may be as low as 0.97 [Kondo and Yamazawa,
1986], in which case reflected longwave radiation must be
considered when calculating Ts from upwelling longwave
data. We checked the impact of e selection at four sites with
pyrgeometers, and found that the mean difference between
Ts(e 5 1) and Ts(e 5 0.97) was 0.2�C, and therefore, our selec-
tion of e 5 1 did not significantly alter the results of the study.
At CDP, Ts was measured directly with an infrared thermome-
ter and indirectly with a downward-pointing pyrgeometer;
only the colder Ts measurement was reported each hour in the
data set published by Morin et al. [2012]. A separate analysis
(see supporting information 2) assessed how sensor type might
impact the analysis using infrared Ts and pyrgeometer Ts meas-
urements at the BOG site. This auxiliary analysis suggested
that the type of sensor did not significantly bias the results of
the study. However, due to site-to-site differences in sensor
field-of-view, we qualitatively considered the impact of sensor
type when interpreting the results of the study. A full assess-
ment of the relative uncertainties of these different sensors was
outside the scope of the study. Based on manufacturer’s speci-
fications, both types of sensors had temperature-dependent
uncertainties in measured Ts (Table 1).

[13] Only Ts measurements in the operating ranges of the Ts

sensors (i.e., 240 to 0�C for pyrgeometers, 230 to 0�C for IR
sensors) were used in the analysis. Ts observations exceeding
0�C with snow cover present were manually set to the physical
limit of 0�C. Averaged across the sites, these cases represented
4.6% of observations, but 19% of observations at CDP
exceeded 0�C (but all were less than 2�C). These erroneous
values may occur due to calibration errors, radiative heating
errors, or when nonsnow surfaces (e.g., vegetation, bare
ground) are located in the field-of-view of the infrared ther-
mometer or pyrgeometer. We further constrained the analysis
to periods when measured snow depth exceeded 10 cm to min-
imize impacts from herbaceous vegetation protruding out of
the snow. Debris on the snow surface may also alter the radio-
metric properties of the snow, and thus presents additional
uncertainty in the Ts measurements. This was relevant at CDP
where tree litter and atmospheric dust have been documented
[Etchevers et al., 2004], and at SASP and SBSP where dust
deposition on the snow surface is common [Painter et al.,
2007].

3. Calculation of Meteorological Variables and
Conditions

3.1. Wet-Bulb Temperature (Tw)

[14] The wet-bulb temperature (Tw) is the temperature
that an air parcel would reach if cooled to saturation at
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constant pressure through evaporation of water into the par-
cel, where the parcel provides the latent heat for evapora-
tion. When temperature is below the freezing point, the wet
bulb is sometimes referred to as the ice-bulb temperature.
Tw can be measured in the field with a sling psychrometer
(which ensures convective heat transfer overwhelms radia-
tive heat), but such measurements were not made at the
sites. In the absence of measurements, Tw can be estimated
with psychrometric charts or an iterative numerical
approach based on temperature, humidity, and atmospheric
pressure (Patm). To estimate Tw, we used the iterative solu-
tion described by Iribarne and Godson [1981], a common
tool that is used both operationally (e.g., in the Advanced
Weather Interactive Processing System of the US National
Weather Service) and in research models (e.g., the Distrib-
uted Hydrology Soil Vegetation Model) [Wigmosta et al.,
1994]. Patm was estimated at a constant value using an
empirical relationship between elevation and pressure at
each site, except at CDP and SASP, where hourly Patm

measurements were available. Using observations at CDP
and SASP, we tested the assumption of temporally constant
Patm versus hourly Patm for estimating Tw, and found a
maximum difference of 0.3�C between the two approaches.
Thus, assuming temporally constant Patm introduced little
error into Tw estimation.

3.2. Dew Point Temperature (Td)

[15] Td is defined as the temperature that an air parcel
would reach if cooled to saturation with respect to water at
constant pressure without changes in moisture content. The
frost point temperature is analogous to Td, except saturation
is considered with respect to an ice surface instead of
water. For simplicity, we refer to both as Td, but note that
we are actually calculating frost point when Ta� 0�C and
the dew point when Ta> 0�C. Here we assume that there is
no freezing-point depression for liquid water, and that the
water vapor and snow have no impurities. For an unsatu-
rated air parcel, Td is lower than the other standard temper-
atures, where Td< Tw<Ta. For a saturated air parcel (i.e.,
e 5 esat), Td 5 Tw 5 Ta.

[16] Td can be measured with a variety of hygrometers
(e.g., capacitive, resistive, chilled mirror), but often satura-
tion state or moisture content is instead reported as relative
humidity (RH) or specific humidity in published data sets.
We, therefore, used a Magnus-Tetens approach [Murray,
1967] to convert measured Ta (�C) and fractional RH to Td

(�C) at each time step:

Td5
c ln ðRHÞ1 bTa

c1Ta

h i
b2ln ðRHÞ2 bTa

c1Ta

(1)

[17] Alduchov and Eskridge [1996] provide different
empirical coefficients for equation (1) depending on
whether saturation is taken with respect to water (esat,w) or
with respect to ice (esat,i). When Ta> 0�C, we use the esat,w

coefficients b 5 17.625 and c 5 243.04�C, and when
Ta� 0�C, we use the esat,i coefficients b 5 22.587 and
c 5 273.86�C. Relative to other common approximations,
maximum relative error with this approach is 0.384% for
calculating vapor pressure [Alduchov and Eskridge, 1996].
This maximum error in esat translates to a maximum error
of 0.1�C in Td. Because of the high precision of this empiri-
cal equation, uncertainty in Td arises almost exclusively
from uncertainties in measured Ta and RH.

3.3. Boundary Layer Stability

[18] We hypothesize that atmospheric stability plays a
complex role in the representation of Ts with standard
height temperatures. Andreas [1986] hinted at this by
showing that near-surface Td theoretically approached Ts as
latent heat flux decreased to 0 W m22, and the absolute dif-
ferent between Td and Ts decreased with increasing wind
speed. This implies that Td approximates Ts best under peri-
ods with (1) high wind shear (i.e., by proxy, unstable
boundary conditions) or (2) when there is no vapor pressure
gradient between the near-surface atmosphere and the snow
surface (i.e., no sublimation or condensation). He also
showed that when Td was less (greater) than Ts, sublimation
(condensation) was occurring at the snow surface. How-
ever, he did not explicitly consider the role of atmospheric
stability. We expect that Td at standard height best repre-
sents Ts during unstable conditions when turbulent mixing
reduces stratification of moisture and temperature. During
stable conditions, standard height temperatures can become
decoupled from Ts.

[19] To characterize boundary layer stability, we calcu-
lated the bulk Richardson number (Rib) [Singh and Frevert,
2002] at each time step:

Rib5
gzðTa2TsÞ

0:5ðTa1TsÞUðzÞ2
(2)

where g is the acceleration of gravity (m s22), z is the
height of the temperature sensor above the snow surface
(m), temperature values are in Kelvin, and U(z) is wind
speed (m s21) at height z. Because wind speed was not
measured at the same height as temperature at every study
site (Table 1), we rescaled the measured wind speed (Uobs)
to the temperature sensor’s height z at each time step
assuming a power law wind profile:

Figure 1. Sites used to evaluate snow surface tempera-
ture approximations. Acronyms are defined in Table 1.
Background colors represent DJF air temperature at stand-
ard height averaged over 1900–2006 [Legates and Will-
mott, 1990].
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UðzÞ5Uobs
z

zu

� �a

(3)

where zu is the height of the wind speed measurement (m)
and a is 1/7, an average value assumed when the wind pro-
file is unknown [Peterson and Hennessey, 1978]. A poten-
tial source of error in this rescaling approach arises when
the near-surface wind profile deviates from the power law
profile, such as during periods of shallow katabatic flow
[Whiteman, 2000]. The sites did not collect wind profile
data that would permit better understanding of these errors.

[20] The Richardson number compares buoyancy sup-
pression of turbulence against turbulence generation to
characterize stability conditions. Based on the literature, a
critical Richardson number in the 0.15–0.25 range sepa-
rates unstable and stable conditions, with unstable (stable)
conditions prevailing below (above) the critical value. We
assume that the critical number is 0.20 at the study sites,
but note that there is disagreement about the critical num-
ber over snow [for a discussion, see Andreas, 2002]. We
note that many physically based snow models [e.g., Jordan,
1991] implement a correction based on Rib when comput-
ing turbulent fluxes.

3.4. Radiative Heating and Clearness Index

[21] Because incoming radiation is the primary energy
source for heating and melting a snowpack in many cli-
mates, it is important to consider how radiative heating
impacts Ts and approximations thereof. Solar heating of
instruments may also bias measurements of Ts [Andreas,
1986] and standard height temperature [Huwald et al.,
2009]. Incoming shortwave and longwave radiation vary
with latitude, slope, elevation, time of day, time of year,
forest cover, and cloud cover. For simplicity, we only con-
sider how radiation changes in time and with sky condi-
tions (i.e., clearness versus cloudiness). To approximate
sky conditions, we calculated a dimensionless clearness
index (CI) at each time step:

CI5
Qsi;obs

Qsi;toa
(4)

where 0�CI� 1, Qsi,obs is measured incoming shortwave
radiation (W m22) and Qsi,toa is extraterrestrial incoming
shortwave radiation (W m22), which varies latitudinally,
diurnally, and seasonally. Qsi,obs was observed at all sites ;
however, we used the SBSP observations at SASP because
of the tendency for the radiometer dome to become snow
covered at SASP where it is less windy than SBSP. Qsi,toa

was calculated as a function of time of day, time of year,
and latitude [Iqbal, 1983]. High values of CI indicate
sunny conditions during the day, and surface cooling at
night. We classified cloudy conditions when CI< 0.35
and sunny conditions when CI> 0.35 based on Mussel-
man et al. [2012]. Because CI was only used to classify
cloudy versus clear sky conditions, we expected minimal
impact in the CI analysis from topographic shading. At
sites and times of the year where topographic shading was
important, this effect was similar to cloudy conditions
near sunrise or sunset. Note that CI (equation (4)) and the
Richardson number (equation (2)) are calculated inde-
pendently of each other.

[22] Equation (4) does not yield valid CI values during
the night. Following the recommendations of Flerchinger
et al. [2009], we applied a 24 h averaging window to Qsi,obs

and Qsi,toa before calculating CI. This yielded values at
night based on clearness conditions from the previous and
following days, making it less sensitive to Qsi errors at sun-
rise and sunset. Manual observations of sky conditions
were not available, so it was not possible to provide uncer-
tainty estimates of this interpolation. However, qualitative
comparison with CI back-calculated from local Qli meas-
urements showed that the Qsi-based CI calculations reason-
ably represented temporal variations in clearness
conditions (no figures shown). More research is needed to
better understand the uncertainty in the nighttime CI.

3.5. Evaluation Metrics

[23] We quantified how well Ta, Tw, and Td each approxi-
mated Ts according to three metrics. These metrics
included the coefficient of determination (R2), mean bias,
and root-mean-squared error (RMSE). The R2 statistic
measures the variance explained in the Ts time series by
each temperature time series, providing a measure of the
temporal correlation between data sets.

[24] Mean bias reflects the systemic difference between
two data sets and how accurately one represents the other.
Mean bias (�C) was calculated as:

bias 5
1

n

Xn

i51

TxðiÞ2TsðiÞ (5)

where n is the number of hourly observations at each site
with snow cover (i.e., depth > 10 cm), and Tx is the temper-
ature approximation (i.e., Ta, Tw, or Td).

[25] RMSE measures the random differences between
two data sets and the level of precision when approximat-
ing one data set with another. RMSE (�C) was calculated
as:

RMSE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i51

TxðiÞ2TsðiÞð Þ2
s

: (6)

[26] Statistics are reported for each site separately. When
considering the aggregate statistics across all sites, we first
calculated the statistics for each site and then averaged
them because the sites had varying periods of record and
different sampling frequencies (Table 1).

4. Physically Based Snow Modeling Experiment

[27] To illustrate how a simple, independent approxima-
tion of Ts might benefit snow modeling studies, we consid-
ered how biases in the energy balance of a physically based
snow model become manifested in Ts and whether Td can
be used to detect bias. This was a relevant application, as
data are rarely available to validate the energy balance or
Ts in snowmelt modeling studies. We selected the one-
dimensional, multilayer snow thermal model (SNTHERM)
[Jordan, 1991] for the physically based simulation of Ts at
the CDP site during water year 2006. SNTHERM was
developed specifically for the prediction of Ts (i.e., the ther-
modynamic temperature of the top layer) based on energy
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exchanges at the snow-atmosphere interface and is
regarded as one of the more sophisticated and reliable snow
models available [Etchevers et al., 2004]. SNTHERM sim-
ulates various snowpack processes, including snow accu-
mulation, frost development, compaction, metamorphosis,
grain growth, sublimation, and snowmelt. Watson et al.
[2006] argued that SNTHERM is the ‘‘benchmark model’’
for physically based simulation of snowmelt processes,
though the model’s complexity has limited its application
in distributed modeling.

[28] SNTHERM simulates snowpack development by
dividing new snowfall into horizontally infinite layers. The
governing equations for energy and mass balance are
applied between these layers, with the meteorological con-
ditions applied at the upper (i.e., snow-atmosphere) bound-
ary, and steady state conditions assumed at the lower (i.e.,
snow soil) boundary. An iterative numerical solution yields
estimates of Ts, and layer specific states for thickness, den-
sity, temperature, and phase. Iterative solution of Ts from
the energy balance is possible because multiple processes
are functions of Ts, including outgoing longwave radiation,
sensible heat, latent heat, and heat conduction into the
snowpack [Outcalt, 1972; Outcalt et al., 1975; Jordan,
1991; Tarboton and Luce, 1996; Liston and Elder, 2006].
Physically based, iterative approaches for estimating Ts

have disadvantages in that they require accurate forcing
data for the other components of the energy balance [Pom-
eroy et al., 1998], and they can be computationally expen-
sive to reach convergence [Wigmosta et al., 1994]. Despite
being physically based, some parameters in these models
require calibration (e.g., thermal conductivity) [Tarboton
and Luce, 1996; Essery and Etchevers, 2004], which yields
additional uncertainties in modeled Ts and the surface
energy balance.

[29] To demonstrate the relationship between energy bal-
ance bias and Ts bias, we simulated snowpack at CDP dur-
ing one water year with SNTHERM, with a control
simulation and with biased forcing data scenarios. For the
control simulation, we used local hourly observations (i.e.,
Ta, RH, wind speed, incoming shortwave radiation, out-
going shortwave radiation, and incoming longwave radia-
tion) to force the model and compared modeled and
observed values of Ts. This provided a benchmark for
understanding the accuracy of modeled Ts under an ideal
forcing data scenario. We also compared Td and Ts as a ref-
erence. We then introduced artificial biases (215%,
210%, 25%, 15%, 110%, 115%) in the incoming radia-
tion data and then modeled Ts with SNTHERM with each
of these six biased data sets. Biases were applied to day-
time hours only for shortwave radiation and at all hours for
incoming longwave radiation. These scenarios with biased
radiation resembled the reality of snowmelt modeling in a
data sparse environment, as biases in model data and/or
parameters can propagate to model outputs (e.g., Ts, SWE)
in ways that are not easily detected. We then compared the
Ts simulations generated with biased model data against
both measured Ts and Td to determine whether these
yielded similar relationships. To determine whether Td

could be used to detect bias in a snowmelt model, we
examined the relationship between the energy balance
biases and the mean difference between modeled Ts and Td.
All temperature values were aggregated from hourly to

daily mean values in this experiment for simplicity. Finally,
we conducted an auxiliary analysis to determine how the
thickness of the top snow layer impacts Ts approximation
(see supporting information 3), so as to make the results
relevant to other snow models (e.g., SNOBAL [Marks
et al., 1998]) that make the top layer thickness constant in
time. This separate analysis indicated that the approach
may be generally applicable to other models as long as the
top layer is thin (�5 cm).

5. Results and Discussion

5.1. Comparing Radiant Ts With Standard Height
Temperatures

[30] Comparisons of the standard height hourly tempera-
tures (Ta, Tw, and Td) and observed radiant Ts are presented
in Figure 2. For all temperature comparisons, much of the
scatter in Figure 2 is due to subdaily variations. For each
site, summary statistics are shown for hourly values in Fig-
ure 3 and daily maxima/minima in Figure 4. Diurnal statis-
tics for all sites are shown in Figure 5. We now address each
temperature data set sequentially through these figures.

[31] Despite reasonable correlation between Ta and Ts,
Ta was consistently higher than Ts, and the magnitude of
this bias was inconsistent between sites (Figures 2a–2g,
and 3b). Averaged across the sites, Ta> Ts in 95% of meas-
urements; convective instability is rare in snow-covered
environments, which helps explain why Ta is generally
biased high for Ts estimation. For Ta, we also considered
lagged correlations with Ts, but found that the greatest cor-
relation was with no lag at four of the seven sites. Ta

approximated Ts better during daytime than during night,
as indicated by the three summary statistics (Figure 5).

[32] Like Ta, Tw also exhibited a consistent warm bias
(Figure 3b), although this bias decreased with increasing Ts

(Figures 2h–2n). Despite this warm bias, Tw had the strong-
est correlation with Ts at all sites (Figure 3a) and at all
hours of the day (Figure 5a). The correlation improved
slightly at only two of the seven sites when a lag correla-
tion was attempted (no figure shown). The strength of the
correlation between Tw and Ts appeared related to the diur-
nal cycle, as the correlation was comparable to the Td cor-
relation at night but increased slightly during the daytime
hours, while the strength of the Td correlation diminished
during the day (Figure 5a). However, it was not clear why
this occurred. One possible explanation is that sublimation
from the snowpack during the day released vapor into the
air above, such that Tw tracked these variations. The vapor
pressure of the air tended to increase during daytime, which
supports this hypothesis (no figures shown).

[33] Of the three standard height temperatures, Td had
the lowest absolute bias and RMSE when approximating Ts

(Figures 3b and 3c), but underestimated Ts more often than
Ta and Tw at warmer Ts (Figures 2o–2u). The correlation
between Td and Ts was never stronger than the correlation
between Tw and Ts at any one site (Figure 3a) or during
daytime hours (Figure 5a). Mean Td 2 Ts ranged from 22.3
to 12.6�C across the sites and from 22.8 to 1.5�C across
the diurnal cycle (when averaged across all sites). These
ranges exceed the 61�C accuracy reported by Andreas
[1986] when using 10 cm height Td. However, at four sites
(SPY, SASP, OPB, BOG), the bias ranged from 21.0 to
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20.3�C, well within the range of Andreas [1986]. Thus,
climate and environmental conditions may play as large of
a role in the bias as the measurement height of Td. It is also
important to note that the absolute bias for approximating
Ts with Td is comparable to the statistics reported for more
sophisticated snow models [Brun et al., 1989; Boone and
Etchevers, 2001] that solve Ts but require far more data
(e.g., incoming shortwave and longwave radiation, wind
speed). However, the RMSE of the Td approximation (3.3–
5.8�C) was higher than the RMSE of these sophisticated
models (typically �3�C).

[34] In approximating daily maxima and minima of Ts,
the saturation temperatures (i.e., Tw and Td) provided
improved representation over Ta (Figure 4). At all sites, Ta

overestimated daily maxima and minima of Ts. At five of
the seven sites, maximum daily Ts values were typically
between Tw and Td (Figure 4a). Both Tw and Td overesti-
mated minimum daily Ts at all sites, except at SBSP, where
Td underestimated minimum daily Ts (Figure 4b). Daily
minimum Ts was typically colder than daily minimum Td,
suggesting that stable conditions at night decoupled stand-
ard height Td and Ts (see section 5.2). This relationship was
not captured in the composite analysis of diurnal tempera-
ture (Figure 5) because the timing of minimum Td and Ts

did not always coincide and because the minimum values
varied both temporally and from site-to-site.

[35] The results indicate that to first order, Td represents
daily average Ts (Figure 3), minimum daily Ts (Figure 4b),
and nighttime Ts (Figure 5b) with the least bias, and that

Figure 2. Comparisons between observed subdaily (i.e., 30 min or hourly) snow surface temperature
(Ts) and standard height (a–g) air temperature, (h–n) wet-bulb temperature, and (o–u) dew point tempera-
ture at the seven study sites. The sites are organized from warmest (left) mean DJF temperatures to cold-
est (right). Comparisons are only shown during periods when snow depth exceeded 10 cm and when Ts

was within the measurement range. The black dashed line is the 1:1 line.

Figure 3. Summary statistics, (a) R2, (b) Bias, and (c)
RMSE, for approximating hourly snow surface temperature
with air temperature, wet-bulb temperature, and dew point
temperature at the seven study sites.
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the saturation temperatures (Tw and Td) characterize maxi-
mum daily Ts more accurately than Ta. None of the stand-
ard height temperatures captured both the daily maxima
and minima of Ts because their diurnal ranges tended to be
much lower than the Ts diurnal range (Table 2). Approxi-
mation of hourly Ts might thus be improved using Tw dur-
ing the day and Td during the night as predictors (Figure 5),
but development of such a method was outside the scope of
this study.

[36] These comparisons demonstrate the inherent difficulty
in estimating Ts based on Ta across different climates. While
Ta 5 Ts (top layer) may be true under certain meteorological
conditions at night [see Helgason and Pomeroy, 2012, Figure
9], the results of this study (which span a wider range of sea-
sonality and climate) indicate that these conditions are not fre-
quent and that generally Ta>Ts. Empirical methods of
estimating Ts based on a static offset from Ta [e.g., Brubaker
et al., 1996] attempt to correct the estimation bias, which
ranged from 13.2 to 16.8�C at the seven study sites and from
14.4 to 15.5�C across the diurnal cycle. However, the bias
cannot be known a priori, and can vary from published values
even within a single climatic zone. For example, Brubaker
et al. [1996] found that Ta was typically 12.5�C higher than
Ts at a site in Vermont, USA, but our data in Vermont (SRV)
suggests the difference is 16.8�C. Using the 2.5�C offset, a
bias of 4.3�C would remain, exceeding the 2.6�C bias found
from assuming that Td approximated Ts. We, therefore, expect
methods that estimate Ts based on an offset from Ta have lim-
ited usefulness due to a lack of transferability.

5.2. Impacts of Stability and Radiation on Radiant Ts

Approximation

[37] Because radiation interacts with boundary layer sta-
bility through surface heating, it is difficult to distinguish
their independent effects. We used a compositing approach
to examine how each of these factors contributed to bias
when approximating radiant Ts with standard height Td. We
only consider Td for the rest of the study because it approxi-
mated Ts with the lowest bias at all sites and the lowest
RMSE at most sites (section 5.1). To assess the role of sta-
bility, we first calculated the difference between Ts and Td

and binned the results using the critical Rib as a classifier
(Figure 6). Relative to unstable conditions, the difference
between Td and Ts tended to increase during stable condi-
tions, such that Ts was generally colder than Td. Such a
cooling effect may arise at night due to surface cooling or
during the day due to shallow stable layer formation over
melting snow cover [Halberstam and Schieldge, 1981;
Mahrt and Vickers, 2005]. Median Td 2 Ts was closest to
0�C during unstable conditions at five of the sites with sta-
tistical significance (95% level, rank sum test).

Figure 4. Bias in estimating (a) maximum daily surface
temperature (Ts,max) and (b) minimum daily surface tem-
perature (Ts,min) using air temperature (Ta), wet-bulb tem-
perature (Tw), and dew point temperature (Td) at the seven
study sites. A positive bias indicates overprediction of Ts.

Figure 5. Summary statistics for approximating hourly
snow surface temperature with air temperature, wet-bulb
temperature, and dew point temperature at all study sites as
a function of time of day. Statistics were first computed for
each hour at each site, and then the diurnal statistics were
averaged across sites.

Table 2. Mean Daily Temperature Rangesa (�C) at the Study Sites
During Periods with Snow Depth Exceeding 10 cm

CDP SRV SPY SASP SBSP OPB BOG

Ts 8.4 15 12 15 11 9.1 15
Ta 6.2 14 9.2 12 7.8 6.4 14
Tw 4.6 11 7.8 8.8 6.2 5.1 12
Td 4.9 9.9 7.5 9.1 10 6.3 11

aAt each site, the largest temperature range is in bold.
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[38] Averaging the hourly bias across the sites provided
further clarification on how radiation and stability each
affected approximations of Ts with Td (Figure 7). Clear sky
periods generally had Td>Ts at night and Td< Ts during
the day (Figure 7a). Cloudy periods had similar differences
between Ts and Td at night, but smaller differences between
Ts and Td during the day. The midday underestimation bias
was a persistent feature at most of the sites when approxi-
mating Ts with Td. Stable periods decoupled Ts and Td at
night, such that Ts was 3.0�C colder than Td when averaged
across nighttime hours and across all sites (Figure 7b). In
contrast, Ts measurements were typically within 0.5�C of
Td during unstable periods at night. Regardless of stability
conditions, the effect of radiative heating caused Ts> Td

during the daytime hours. When considering stability and
radiation conditions together (Figure 7c), cloudy and unsta-
ble periods had the lowest bias through the day. The mid-
day (i.e., noon) bias was most reduced during cloudy and
stable periods, but this was likely the result of offsetting
effects from surface cooling (due to stable conditions) and
surface heating (due to radiation).

[39] The frequency of stable conditions and clear skies
helped explain why approximating Ts with standard height
Td was more reliable at some sites and less reliable at
others (Figure 8). Bias in approximating Ts with Td at mid-
day was significantly (p< 0.01) related to the frequency
of clear sky conditions (Figure 8a) ; the sunniest sites
(e.g., SASP and SBSP) had the largest noon bias when
approximating Ts with Td. At midnight, bias in the approx-
imation was significantly related to stability frequency
(Figure 8b, p 5 0.05). The midnight bias was closer to
0�C at windy sites where stable conditions were less fre-
quent (e.g., SBSP, SPY, and OPB). The type of Ts instru-

ment did not seem to impact the results (Figure 8 and see
supporting information 2).

[40] Because Td approximates Ts less reliably under stable
atmospheric conditions (Figures 6–8), it would be difficult to
calculate the bulk Richardson number (Rib) accurately at
locations where only temperature and humidity observations
were available. In the above analysis, we computed Rib
using measured Ts in equation (2). In practice, Rib would
need to be computed with an assumed value of Ts and an
estimate of wind speed. The assumption of Ts 5 Td results in
increased uncertainty in Rib, as Td tends to overestimate Ts

during the night and underestimate Ts during the day for sta-
ble conditions. This propagates error into the calculated Rib,
thereby obscuring understanding of the stability and turbu-
lence conditions and the reliability of the Ts 5 Td approxima-
tion at a given time. To quantify this issue, we compared
categorical estimates of stability (i.e., stable versus unstable)
in time using Rib values calculated from Ts and Rib values
calculated from Td, assuming wind speed was known. Aver-
aged across the sites, Rib(Td) correctly identified stable con-
ditions 30% of the time (min 5 5%, max 5 56%) and
correctly identified unstable conditions 55% of the time
(min 5 27%, max 5 88%). When identifying unstable condi-
tions, Rib(Td) matched Rib(Ts) reasonably at the prairie SPY
site (88% correct) and at the alpine SBSP site (83% correct),
but Rib(Td) did not often match Rib(Ts) at the wind-sheltered
SASP site (27% correct). While we are unable to resolve
this issue with uncertainty in Rib, this analysis shows the
identification of unstable periods (when Td 5 Ts is more reli-
able) is least impacted at windy, exposed sites.

[41] Andreas [1986] originally found that daytime Td was
lower than Ts on sunny days, but assumed that solar heating
biased the infrared sensor that he used to measure Ts.

Figure 6. Box plots showing the difference between dew point temperature (Td) and measured snow
surface temperature (Ts) as a function of the bulk Richardson (Rib) number at the seven study sites.
Hours are binned based on unstable (Rib< 0.2) and stable (Rib> 0.2) conditions. Td data are constrained
to an upper limit of 0�C for prediction of Ts.
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Radiative heating presents a source of uncertainty in the Ts

measurements of our study and may explain some of the mid-
day bias in approximating Ts with Td. However, we also note
that snow has been shown to exhibit remarkable fluctuations
in temperature over subdaily time scales in response to fluc-
tuations in energy. In a controlled laboratory experiment,
Shea and Jamieson [2011] documented that for a moderately
dense snowpack (i.e., 270 kg m23), Ts increased 14�C in
response to 3 min of 175 W of infrared heating, and cooled
back to the original temperature minutes after the heat source
was removed. The field observations of Wagner and Horel
[2011] also showed that Ts can exhibit large diurnal fluctua-
tions, with temperature increasing from 217 to 20.3�C over
a 6 h period. Our temperature data (Table 2) indicate that
daily ranges of Ts were within these carefully measured val-
ues, and therefore, we cannot attribute all of the daytime bias
to solar heating of the Ts sensors. With the available data, we
cannot distinguish Ts measurement errors from actual
increases in Ts. However, simulations with the physically
based SNTHERM model indicate that the magnitude of these
midday surface temperature fluctuations are plausible, sup-
porting the hypothesis that the observed increases in Ts are
not the result of sensor heating (no figures shown).

5.3. Thermodynamic Ts Case Study: Comparisons
With SNTHERM

[42] The top layer thermodynamic Ts from the SNTHERM
control simulation (i.e., all forcing data available) accurately
represented radiant Ts at CDP in water year 2006, with

R2 5 0.97, bias 5 10.74�C, and RMSE 5 1.14�C for mean
daily Ts (Figure 9a). The control simulation tended to overesti-
mate radiant Ts mostly at colder temperatures but matched Ts

better as the snow warmed to the melting point. These results
demonstrate that a sophisticated snow model can produce real-
istic simulations of Ts under an ideal data input scenario.

[43] In comparison, the simple approximation of radiant
Ts with Td (Figure 9b) yielded a similar bias in modeled Ts

(bias 5 11.02�C), although this Td approximation had
higher variability (R2 5 0.75 and RMSE 5 2.7�C), espe-
cially at colder temperatures. While the accuracy of the Td

approximation was lower than the snow model, it was
accomplished with fewer data inputs (i.e., only temperature
and humidity). The biases of both approaches (Figures 9a
and 9b) are comparable to the highest accuracy (60.7�C)
obtained with multiple snow models in the snow model
intercomparison project [SnowMIP, Etchevers et al.,
2004]. The RMSE of the Td approximation is also within
the 0.7–3�C RMSE range reported for most models in
SnowMIP and the 0.79–2.88�C RMSE range for three mod-
els tested by Boone and Etchevers [2001].

[44] Artificial biases introduced in the energy balance
were directly correlated with the resulting bias in
SNTHERM-modeled Ts, such that underestimation (overes-
timation) biases in the energy balance yielded underestima-
tion (overestimation) biases in Ts. Examples for the cases
of 610% bias are shown in Figures 9c–9f. Interestingly,
similar biases were observed when comparing modeled Ts

to observed Ts and Td in the 210% energy bias case

Figure 7. Difference between dew point temperature and measured snow surface temperature averaged
across all seven sites during each hour of the day. Results are classified based on (a) radiation conditions
(as defined by the clearness index, CI), (b) stability conditions (based on critical bulk Richardson num-
ber, Rib), and (c) both radiation and stability conditions. Td data are constrained to an upper limit of 0�C
for prediction of Ts.
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(Figures 9c and 9d), and when comparing modeled Ts to
observed Ts and Td in the 110% energy bias case (Figures
9e and 9f). In fact, the bias in the energy balance was
strongly correlated (p< 0.001) with the mean difference
between modeled Ts and Td (Figure 9g). Because Td is a
reasonable surrogate for Ts for daily averages (Figure 3b),
the implication is that Td has potential use as a diagnostic
tool for detecting bias when simulating snowpack with a
physically based model.

[45] Our results suggest that large systematic differences
(i.e., exceeding 2�C) between modeled Ts and Td may indi-
cate the presence of bias in the energy balance. Although
this does not reveal the source of the bias (e.g., model
parameters, forcing data), it provides a previously unreal-
ized method for assessing bulk model performance. Energy
balance bias is common in mountains and snow-dominated
environments because most components require estimation,
and it is difficult to estimate radiation accurately in com-
plex terrain. For example, Jepsen et al. [2012] showed
absolute biases in modeled downwelling radiation as high
as 30% (for shortwave) and 15% (for longwave) over the
March to August snowmelt period in the Sierra Nevada and
Rocky Mountains. Td could help detect biases of these
magnitudes in the energy balance. More work is needed to
develop this methodology, but the results from this exam-
ple show promise for distributed model testing in data
scarce regions.

6. Summary and Conclusions

[46] In this study, we assessed how standard near-surface
measurements of temperature and humidity (Ta, Tw, Td)
compared to measured values of Ts. We examined how site

climate, time of day, boundary layer stability, and radiation
impacted Ts representation. We further compared Ts

approximations based on Td against Ts simulations from a
physically based, energy balance snowmelt model
(SNTHERM), and demonstrated that Td can be used to
detect bias in the modeled snowpack energy balance. The
goal was to provide a practical extension of the work of
Andreas [1986] in order to understand how well standard
height dew point temperature approximates Ts (both radiant
and thermodynamic) over a wider range of conditions. The
results demonstrated that the standard height saturation
temperatures (Tw and Td) approximated Ts more accurately
than Ta (Figures 2–5). However, Td tended to underestimate
maximum daily Ts and (at most sites) slightly overestimate
minimum daily Ts (Figure 4). Biases were related to the fre-
quency of stability and radiation conditions, and these
effects varied with time of day and the frequency of those
conditions (Figures 6–8). Results from a modeling case
study showed that approximating Ts with Td is a potential
tool for diagnosing forcing data bias in an energy balance
model (Figure 9).

[47] We, therefore, conclude that Td at standard height is
a reasonable first-order approximation of daily average Ts

in many environments, and that it is preferred over
approaches that track Ta, which have seen more usage in
the literature. The modeling experiment results indicate
that comparing mean daily Td to model estimates of mean
daily Ts across the snow season has previously unrealized
value for assessing model performance in mountains and
snow-dominated areas, where evaluation data are rarely
found at the location of interest. It was beyond the scope of
this study to test this model diagnostic tool comprehen-
sively, and future work should develop the method further.

Figure 8. Frequency of (a) noon clear sky conditions and (b) midnight stability versus mean bias when
approximating Ts with Td at (a) noon and (b) midnight. Td data are constrained to an upper limit of 0�C
for prediction of Ts. Noon is taken as the average from 1100 to 1300 h, while midnight is taken as the
average from 2300 to 0100 h. The markers denote the type of instrument used to measure Ts.
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Figure 9. Modeling experiment results with SNTHERM at CDP in water year 2006. Shown are (a) the
control model simulation (no bias introduced in model data) and (b) the approximation of Ts with Td. (c–
f) Examples of 610% energy balance bias, where Figure 9c compares modeled Ts (210% radiation
bias) to observed Ts, and Figure 9d compares modeled Ts (210% radiation bias) to Td. Figures 9e and 9f
are the same as Figures 9c and 9d except for 110% radiation bias in the model. (g) The relationship
between energy balance bias (%) and the mean difference between modeled Ts with Td . The shading in
Figure 9g represents the 22.3 to 12.6�C uncertainty range when approximating observed Ts with Td, as
found in this study. Only mean daily values are shown.
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Based on the results here, we expect that approximating Ts

with Td is most robust in climates and times where insola-
tion is low and at locations where turbulent mixing occurs
frequently (e.g., alpine areas, windy ridges). Windy regions
in alpine, prairie, and Arctic environments areas may pres-
ent the most ideal testing grounds for remotely sensed Ts

with spatially distributed Td, as remote sensing of snow
properties is possible in these environments. Due to a lack
of measurements in forested sites, we cannot extrapolate
the results of this study to locations under forest canopies,
where turbulence and radiation dynamics are altered due to
wind sheltering and canopy shading of solar radiation.

[48] While Td approximates Ts well for daily averages,
we note that there are a few caveats. First, we note that
errors are more variable for hourly values than for daily
averages (Figure 5), and that none of the standard tempera-
tures capture the daily extremes in Ts (Figure 4 and Table
2). This will impact different applications, and the user
must consider whether accuracy in hourly Ts values is a pri-
ority for their particular application. Differences between
Ts and Td were largest at midday, especially at sites that
experienced increased radiative heating (Figure 8). This
suggests that the vapor pressure of air at standard height is
not in equilibrium with vapor pressure at the snow surface
during sunny conditions, signifying a potential increase in
the magnitude of latent heat flux at midday, likely due to
sublimation. Future work should investigate how to
improve upon these findings, such that the maxima and
minima in Ts are captured. Second, we assume that there is
no vapor pressure gradient when Ts is assumed equal to Td

(i.e., eair 2 esurf 5 0). Because radiation dominates the
snowmelt energy balance in many climates, we do not
expect this to be a major limitation for many applications.
However, in settings where latent heat exchange is impor-
tant, we caution the use of this simple approximation.
Finally, we note that instrument uncertainties may be large
(based on manufacturer’s specified accuracy, Table 1)
when measuring Ts, and our analysis assumed that Ts was
measured accurately with the infrared sensors and pyrge-
ometers. Midday observations of Ts were typically within
61�C of the melting point during the melt season, which
suggests that the accuracy of the sensors may be better than
their specifications, a result also found by Van den Broeke
et al. [2004]. Likewise, we did not find a substantial rela-
tionship between sensor type and Ts representation across
the sites (e.g., Figure 8). Using paired sensors at BOG, we
found reasonable correspondence between paired infrared
sensor measurements and pyrgeometer measurements (sup-
porting information 2). Thus, instrument type did not sig-
nificantly impact our results, but we recommend more
research in how instrument type and differences in field-of-
view might influence interpretation of Ts. Sites that mea-
sure the energy balance rarely have both types of sensors,
and it would be helpful to have more paired measurements
to better understand uncertainties in measured Ts.

[49] This study highlights the value in having improved
temperature and humidity information in snow-dominant
regions and provides strong motivation for expanded moni-
toring and improved understanding of humidity variations.
This adds to the recent results of Marks et al. [2013], who
found that the timing of Td 5 0�C matched the measured
timing of the precipitation phase transition (rain versus

snow) better than Tw 5 0�C and Ta 5 0�C during a winter
storm in the Owyhee Mountains (Idaho, USA). Understand-
ing spatial and temporal variations in both air temperature
and humidity may, therefore, yield improved representation
of both Ts and event-scale precipitation phase across a
watershed. However, to realize these benefits fully, it is
imperative that operational agencies (e.g., NRCS in the
US) expand the number of humidity-observing stations and
ensure reliable data quality (i.e., regular calibration of sen-
sors to correct humidity drift). Coordination between snow
and wildfire monitoring agencies could also increase the
number of humidity observations during the winter (some
wildfire weather stations are inactive during the winter)
without adding new infrastructure. While humidity meas-
urements are more common than Ts measurements by a fac-
tor of 17 in the western US, they are sparse relative to
measurements of air temperature [Raleigh, 2013], which is
a less robust predictor of Ts. Improved understanding of
humidity variations between permanent stations might also
be accomplished through short-term field campaigns with
inexpensive sensors, which have compared reasonably well
to NOAA weather stations [see Feld et al., 2013 and asso-
ciated supplement], and numerical weather models. The
calibration of hygrometers can significantly impact their
reliability, and thus care must be taken to ensure robust cal-
ibration is routinely applied [Ingleby et al., 2013].

[50] Improved spatial and temporal information of Td

would benefit a number of applications with remote sensing
related to Ts. For evaluation purposes, remotely sensed land
surface temperature from satellite-based sensors such as
MODIS [Wan and Li, 1997] or VIIRS [Guillevic et al.,
2012] could be compared to spatial estimates of Td in
snow-covered environments, particularly at night when Td

reasonably approximates Ts at many locations (Figure 5).
The proposed methodology may help to extend understand-
ing of spatial variations of Ts, a key scale issue when using
sparse point station measurements to evaluate remotely
sensed land surface temperature data sets [Wang, 2005;
Hall et al., 2008]. For the coarse resolution remote sensing
products (e.g., MODIS 1 km Ts), pixels with mixed land
covers (i.e., snow, forest, bare soil, shade) yield high uncer-
tainty in Ts, enhancing the difficulty of evaluating against
surface station observations; understanding of Td variations
around the site may provide useful context in these compar-
isons. Areas with more homogenous terrain (e.g., the Arctic
and cold prairies) may be less prone to this mixed pixel
problem and would permit more ideal testing of remote
sensing with Td. Spatial distributions of Td might also be
used to downscale remotely sensed Ts from coarse spatial
scales (e.g., 1012103 m) to finer scales (e.g., 1002101 m).
It was beyond the scope of this study to compare remotely
sensed land surface temperature to distributed Td fields,
though the question of spatial variability of these fields is
important. Future work should investigate these potential
remote sensing applications.

[51] Distributed snow model applications may also bene-
fit from the presented analysis. Snow models are typically
evaluated against point observations of SWE and stream-
flow, which help to assess the representation of the mass
balance. However, these variables do not directly reflect
variations in the surface energy balance throughout the
year, as SWE may only be sensitive to energy bias during
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periods of snowmelt [Wayand et al., 2013]. Ideally, more
weather stations in snow-dominated environments would
measure the complete energy balance to better understand
errors in modeled processes, but financial and practical
considerations preclude this possibility. Distributed hydrol-
ogy and snow models must estimate shortwave and long-
wave radiation, and common methods for estimating
radiation may have large biases (e.g., 10–100 W m22) [Jep-
sen et al., 2012] that are undetectable due to a lack of
ground measurements. In the absence of such measure-
ments, the method presented here for approximating Ts

with minimal data may be useful for model testing because
Ts responds directly to variations and bias in the energy bal-
ance, and Td tracks these variations in a similar manner
(Figure 9). By using observations of Td, SWE, runoff, and
SCA to evaluate a snow model, the energy and mass balan-
ces are considered more holistically. Finally, while we
illustrated how Td might serve as a tool for detecting energy
balance bias, we suggest that Td might alternatively be used
as a reasonable prognostic representation of daily Ts for
estimating outgoing longwave radiation in distributed radi-
ation snow models, which have often assumed Ts is equiva-
lent to the minimum of Ta and 0�C [e.g., Molotch, 2009].
An unresolved issue for this final application is that Td

tends to underestimate Ts as Ts approaches the melting
point at some sites (Figure 2). More research is needed to
assess how the Ts information embedded in the saturation
temperatures (Td and Tw) may be best applied in numerical
models.
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