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Abstract

Runoff hydrology has a large historical context concerned with the mechanisms
and pathways of how water is transferred to the stream network. Despite this,
there has been relatively little application of runoff generation theory to cold
regions, particularly the expansive treeless environments where tundra vegetation,
permafrost, and organic soils predominate. Here, the hydrological cycle is heavily
influenced by 1) snow storage and release, 2) permafrost and frozen ground that
restricts drainage, and 3) the water holding capacity of organic soils. While
previous research has adapted temperate runoff generation concepts such as
variable source area, transmissivity feedback, and fill-and-spill, there has been
no runoff generation concept developed explicitly for tundra environments. Here,
we propose an energy-based framework for delineating runoff contributing areas
for tundra environments. Aerodynamic energy and roughness height control the
end-of-winter snow water equivalent, which varies orders of magnitude across
the landscape. Radiant energy in turn controls snowmelt and ground thaw rates.
The combined spatial pattern of aerodynamic and radiant energy control flow
pathways and the runoff contributing areas of the catchment, which are persistent
on a year-to-year basis. While ground surface topography obviously plays an
important role in the assessment of contributing areas, the close coupling of energy
to the hydrological cycles in arctic and alpine tundra environments dictates a new
paradigm. Copyright  2008 John Wiley & Sons, Ltd.
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Introduction
Hillslope hydrology is largely concerned with the mechanisms and path-
ways of how water is transferred to stream networks. There is a rich
historical context for hillslope hydrology, beginning with the works of
Horton (1933) who introduced the concept of infiltration excess over-
land flow, and Sherman (1932) who employed this concept in his unit
hydrograph theory. However, the Horton-Sherman assumptions that
runoff is uniformly distributed and derived from an excess of infiltra-
tion (i.e. Hortonian runoff), could not be substantiated for most natural,
vegetated hillslopes. Therefore, new mechanisms and pathways were pro-
posed in subsequent theoretical developments. Betson (1964) suggested
that the generation of surface runoff is limited to partial areas where
hydrological inputs are sustained until the water table intersects the
surface. Others stressed that partial areas are not fixed in space, but
expand and contract in response to soil moisture variations (Hewlett
and Hibbert, 1967; Dunne and Black, 1970), while the remainder of
the basin was seen to act as a reservoir that maintains the wetness
of runoff source areas and produces baseflow between storm events
(Chorley, 1979). Underlying these new theories of hillslope hydrology
was the recognition that exceedance of storage, rather than infiltra-
tion excess, controlled hillslope runoff, and a new set of models were
introduced that reflected this in an explicit (Freeze, 1972) or a semi-
explicit (Beven and Kirkby, 1979) manner. Subsequent to these seminal
works, there has been an explosion of both conceptual and numeri-
cal models that have detailed more explicitly the mechanisms of runoff
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generation, notably, preferential flow pathways
(Weiler and McDonnell, 2004), transmissivity feed-
back (Bishop, 1991), fill-and-spill mechanisms (Spence
and Woo, 2002; Tromp-van Meerveld and McDonnell,
2006) and a recognition of how catchment topography
and topology combine to control streamflow at various
scales (Buttle et al., 2004).

Despite the large amount of research on the
mechanisms of hillslope runoff generation, there has
been relatively little application of these concepts
to cold regions, particularly the expansive treeless
environments where tundra vegetation, permafrost,
and a continuous organic cover predominate. Arctic
and alpine tundra, which is ubiquitous in much of
Canada’s northern and cordilleran regions and the
circumpolar arctic (Bliss and Matveyeva, 1992), has a
distinct hydrological cycle that is heavily influenced
by 1) snow storage (Church, 1974), as the annual
freshet can release more than half the annual pre-
cipitation (Woo, 1986); 2) permafrost (ground that
remains below 0 °C for two consecutive years or
more), which severely restricts hydrological interac-
tion between near-surface suprapermafrost water and
deep sub-permafrost groundwater; and 3) the large
water holding capacity of organic soils (Slaughter and
Kane, 1979) with very high frozen and unfrozen infil-
tration rates that far exceed the rate of input from
snowmelt or rainfall (Dingman, 1971).

During the snow accumulation period, which lasts
eight to nine months, wind redistributes snow across
tundra from areas of short vegetation and high wind
exposure to sites sheltered from the wind, or with
tall, dense vegetation (Pomeroy et al., 1993), causing
order of magnitude variations in snow water equiv-
alent (SWE). At the end of winter, the timing and
magnitude of runoff from tundra hillslopes is closely
tied to aspect, owing to the latter’s strong influence
on the surface energy balance. North-facing slopes
have relatively small snowmelt and active layer thaw
rates, resulting in prolonged snowmelt periods and a
relatively large proportion of runoff generated per
snowmelt, or rainfall input to the hillslope (Slaugh-
ter and Kane, 1979; Carey and Woo, 1998). Melt
water drains from hillslopes in daily pulses or waves
(Dunne et al., 1976) with a timing and magnitude con-
trolled primarily by snowpack depth, and the angle
and length of the hillslope (Ryden, 1977).

Melt water can percolate through the unsaturated,
highly porous organic soil and move rapidly downs-
lope, predominantly through shallow subsurface path-
ways (Soulis and Reid, 1978; Wright, 1979). Surface
flow is virtually absent. Both matrix flow and pref-
erential pathways such as inter-tussock flow (Ding-
man, 1973), inter-hummock flow (Quinton and Marsh,
1998), water tracks (Hinzman et al., 1993) and soil
pipes (Carey and Woo, 2000) contribute to flow, even
when the surface is still snow covered (Woo, 1986) and
before the soil moisture deficit is satisfied. These path-
ways are confined to the organic layer, which ranges

typically from 0·1 to 0·4 m in thickness, and is further
divided into a layer of living and lightly decomposed
vegetation overlying a dense, compacted layer (Hinz-
man et al., 1993). Typically, the water table remains
within the organic soil throughout the thaw period
(Hinzman et al., 1993). Since the degree of decompo-
sition increases with depth below the ground surface,
so too does the proportion of small, closed and dead-
end pores, and dry material per unit volume (Verry
and Boelter, 1978). These depth variations in physical
properties result in a decrease in the saturated, hor-
izontal hydraulic conductivity by two to three orders
of magnitude between the upper and lower organic
layers (Quinton et al., 2000; Carey and Woo, 2001).

Unlike temperate environments, subsurface fluxes
of water and energy are closely coupled in tundra
environments. During active layer thaw, the depth of
the zero-degree isotherm (i.e. the frost table) coincides
closely with that of the cryo-front, since the soil
below the frost table is typically saturated with ice
and a small amount of unfrozen water. The frost
table is therefore relatively impermeable to water
and represents the bottom of the subsurface flow
zone—the thawed, saturated portion of the active
layer that conducts the large majority of hillslope
drainage. As the frost table and the water table
perched above it descend through the thawing active
layer, the horizontal hydraulic conductivity of the flow
zone, therefore, decreases by orders of magnitude.

Despite the relatively deep frost table (extending
to >0·5 m) in late summer, the hydraulic response
of tundra hillslopes can be rapid due to the high
rate of vertical infiltration to the zone of high water
content above the water table (Hayashi et al., 2007)
and the relatively low drainable porosity at depth.
In addition to the gradual reduction in subsurface
runoff velocity with active layer thaw, abrupt changes
to the subsurface flow rate and direction can occur
in response to thaw-induced changes of the frost
table topography that result in a sudden release,
impoundment, or diversion of subsurface water (Woo
and Steer, 1983).

Towards a New Hillslope Runoff Generation
Theory for Tundra
Since the early 1970s, authors have related observa-
tions of runoff processes and pathways in arctic tun-
dra to the aforementioned theories of runoff genera-
tion developed in more temperate locations. For exam-
ple, Landils and Gill (1972) likened low-lying areas,
where the water table is typically close to the ground
surface prior to freeze-up and restricts meltwater
infiltration during freshet, to the partial contribut-
ing areas described by Betson (1964). Several authors
(e.g. Dingman, 1973; Quinton and Marsh, 1999; Carey
and Woo, 2001) have noted that these areas expand
and contract in response to subsurface inputs from
adjacent hillslopes, and thus behave analogously to
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the variable source areas proposed by Hewlett and
Hibbert (1967) and Dunne and Black (1970), with the
distinction that flow is in the near-subsurface. In the
high arctic, the spatial distribution of surface runoff
generating areas can be governed by the disposition
of snow drifts, which in turn is controlled by topogra-
phy and the wind flow field (Lewkowicz and French,
1982; Lewkowicz and Young, 1990). Areas downslope
of large drifts have been identified as partial con-
tributing areas for runoff, which for a limited time
(i.e. melt season) respond to rainfall input by lateral
expansion. Obradovic and Sklash (1987) suggest that
following snow cover removal, variable source areas
diminish and deeper flowpaths become more impor-
tant due to reduced water inputs, and lowering of
the frost and water tables. Roulet and Woo (1988)
reported a process whereby variable source areas coa-
lesce as they expand, causing a spatial integration
of runoff-producing areas, and a consequent abrupt
increase in basin discharge.

In recent years, there has been a demand for
improved predictive models for runoff in arctic tun-
dra given uncertainties regarding the future avail-
ability of northern freshwater resources, freshwater
contributions to the Arctic Ocean, resource develop-
ment, and climate warming (IPCC, 1996). Because
the hydrological characteristics of arctic tundra are
distinct from those of temperate environments from
where traditional concepts of hillslope runoff have
been adopted, new theories that apply specifically to
tundra are needed. This will provide for a more robust
model development, which in turn will improve runoff
prediction for this region. To this end, we propose that
the topographically based contributing area described
by the partial and variable source area concepts be
combined with, and where appropriate be superseded
by, an energy-based contributing area.

When the spatial pattern of SWE due to vari-
ations in aerodynamic energy is aligned with the
topographic-controlled variation in surface radiation
balance which governs the spatial pattern of snowmelt
and ground thaw, stark variation in the volume and
timing of hillslope runoff can result. For example,
deep snowpacks on north-facing exposures will melt
later and over a more prolonged period compared
with shallow snowpacks on south-facing slopes. Carey
and Woo (1998) report complete loss of snowcover
on a south-facing slope one month prior to the onset
of melt at an adjacent north-facing slope. Similarly,
Pomeroy et al. (2003) detail large differences in sur-
face energy balance for adjacent north- and south-
facing slopes.

Differences in energy not only affect the disposition
of snowpacks and the volume and timing of snowmelt
and soil thaw, but also affect the nature of the
subsurface flowpaths through which water is conveyed
from hillslopes to stream channels. Shallow thaw
depths and suppressed evapotranspiration on north-
facing slopes result in greater near-surface wetness,

shallower frost and water tables, and hence, greater
volumes and more rapid runoff of water in highly
conductive near-surface soil horizons (Carey and
Woo, 2001). Conversely, slopes that receive greater
amounts of energy manifest deeper thaw depth, an
enhanced storage capacity, and deeper, slower flow
pathways.

The end-of-winter snow accumulation pattern,
despite some inter-annual variability, is remarkably
similar from year to year in tundra catchments, owing
to the persistent interplay between topography and
the aerodynamic energy distribution (Marsh, 1999).
Likewise, the influence of topography on the distri-
bution of radiant energy enables spatial patterns of
snowmelt and soil thaw to persist from year to year.
While traditional theories of runoff generation may
apply to flat, homogeneous tundra, any degree of topo-
graphic complexity coupled with high latitude intro-
duces stark variations in radiation and aerodynamic
energy, which in turn affects the accumulation and
melt of snow, active layer thaw, soil moisture, evap-
otranspiration, and therefore, the volume and timing
of runoff.

Defining the spatial distribution of energy as it
affects runoff is an important first step towards
identifying energy-based contributing areas. High-
resolution digital elevation models (DEMs) provide
the necessary topographic information to distribute
wind flow and model the spatial distribution of SWE.
They are also needed to distribute solar and terrestrial
radiation for different aspects and solar angles to com-
pute the energy available for snowmelt and ground
thaw (Pomeroy et al., 2003, Hayashi et al., 2007). The
depth of the relatively impermeable frost table can
be computed from the cumulative ground heat flux
(Quinton et al., 2005). If the amount of meltwater
delivered to the ground surface is also known, the
depth and thickness of the subsurface flow zone can be
derived. This, in turn, can be related to the transmis-
sivity of the soil profile to predict the volume and tim-
ing of runoff (Quinton et al., 2004). Since the ground
surface of arctic tundra is so highly permeable, the
topography of the frost table strongly influences both
the rate and direction of hillslope runoff. Defining
frost table topography as it evolves throughout the
thaw season is therefore necessary for proper routing
of subsurface drainage from tundra hillslopes. Recent
studies (e.g. Quinton et al., 2005) suggest that maps of
frost table topography can be achieved by recording
the spatial distribution of the cumulative ground heat
flux over a hillslope as its surface becomes snow-free.

Representing the spatial distribution of energy as it
affects runoff is necessary for the implementation of
energy-based contributing areas in hydrological mod-
els. Hydrological Response Units (HRUs) are used in
numerous models (e.g. Gurtz et al., 2003; Pomeroy
et al., 2003; Zappa et al., 2003) for mass and energy
balance calculation of corresponding biophysical land-
scape units, such as north- or south-facing slopes,
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or portions thereof. HRUs are the smallest, sub-grid
modelling unit that must be described to retain rea-
sonable physical representation of runoff and other
processes within models (Pomeroy et al., 2007). They
are presumed to have uniform internal hydrological
characteristics, are sufficiently large to average out
small-scale spatial variability, and are small enough
that their response scales linearly with increased area.
For the development of an energy-based runoff gen-
eration theory for tundra landscapes, such character-
istics would be those that influence the aerodynamic
and radiation regimes at the surface, including sur-
face roughness, slope aspect and angle. Boundaries
between HRUs can be approximated to topographic
drainage divides, although it is recognized that the
runoff contributing area within an HRU can expand
beyond it to connect with adjacent HRUs. This is
analogous to the spatial integration of source areas
described by Roulet and Woo (1988), and in more
temperate environments by McGlynn and McDonnell
(2003). Such hydrological connectivity is controlled in
part by the geometric distribution and sequence of
HRUs in the landscape.

Summary
We propose an energy-based framework for delin-
eating runoff contributing areas for arctic tundra
environments. While ground surface topography obvi-
ously plays an important role in the assessment of
contributing areas, the close coupling of energy to
the hydrological cycle in arctic and alpine tundra
dictates a new paradigm. Energy controls the dispo-
sition of snow, its melt, and the development of the
active layer, all of which are critical in determining
runoff contributing areas. The distribution of energy-
based runoff contributing areas in catchments persist
from year to year, since spatial variations in aerody-
namic and radiant energy are strongly controlled by
surface topography, namely aspect and slope angle.
To date, there have been only a few process-based
hydrological models explicitly developed and imple-
mented for tundra environments (Zhang et al., 1999;
Quinton et al., 2004). For this reason, schemes devel-
oped for temperate regions (such as TOPMODEL) are
typically imported for tundra-applications to predict
runoff and soil moisture patterns at smaller scales (i.e.
Stieglitz et al., 2003). New research priorities should
include broadening the perspective on runoff mod-
els in organic-covered permafrost terrains. Recent
research has demonstrated strong similarities in the
thermal (Hayashi et al., 2007) and hydraulic (Carey
et al., 2007; Quinton et al., 2008) properties of the
organic soils of arctic and alpine tundra, taiga boreal
forest, and peat-lands. As discussed above, each of
these cold region terrains manifests a similar close
coupling of energy and water flows. It follows that
a greater focus is needed from both field and mod-
elling studies on coupled thaw and drainage pro-
cesses. Research is needed on developing methods of

combining high-resolution DEMs with energy distri-
bution maps for the purpose of deriving the spatial
distribution of: 1) end-of-winter SWE; 2) snowmelt
energy; and 3) ground thaw energy. From these data
layers, the frost table topography could be derived,
which is a critical step toward predicting the rate and
direction of flow. Updating the frost table topogra-
phy throughout the thaw season is essential because,
unlike the static bedrock surface, the frost table
topography evolves as the active layer thaws with
consequences for the rate and direction of subsur-
face drainage. Given the importance of the frost
table topography to hillslope runoff, it is also rec-
ommended that the fill-and-spill hypothesis of Spence
and Woo (2002) be modified for organic-covered per-
mafrost terrain. Unlike water impounded by bedrock,
water stored in frost table topographic depressions
can be released (i.e. ‘spilled’) due to melt-out of the
impounding ground ice without precipitation forcing.
There is a pressing need for appropriate process-
based models for tundra environments. As most tun-
dra catchments (in Canada) are un-gauged, under-
standing the impact of observed climate warming and
unprecedented resource extraction activities can only
be achieved through improved conceptualization of
hydrological processes. An energy-based framework
of runoff generation may lead to improved predictions
of streamflow in both the present and future.
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