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Abstract Frozen soils, including seasonally frozen ground and permafrost, are rapidly changing under a
warming climate, with cascading effects on water, energy, and carbon cycles. We synthesize recent advances in
the physics, observation, and modeling of frozen-soil hydrology, emphasizing freeze—thaw dynamics,
infiltration regimes and preferential flow, groundwater—permafrost interactions (including talik development
and advective heat), and resulting shifts in streamflow seasonality. Progress in in situ sensing, geophysics, and
remote sensing now resolves unfrozen water, freezing fronts, and active-layer dynamics across scales, while
land-surface and tracer-aided hydrological models increasingly represent phase change, macropore bypass, and
vapor transport. Thaw-induced activation of subsurface pathways alters recharge and baseflow, influences
vegetation and biogeochemistry, and modulates greenhouse-gas emissions. Key uncertainties persist in scaling
micro-scale processes, parameterizing ice-impeded hydraulics, and representing abrupt thaw and wetland
dynamics. We outline a tiered modeling framework, priority observations, and integration of vegetation—
hydrology—carbon processes to improve projections of cold-region water resources and climate feedbacks.

Plain Language Summary Frozen ground acts like a seasonal or long-term underground dam that
controls how water moves and how carbon is stored. As the climate warms, these frozen layers thaw. Water then
takes new routes underground, changing when rivers rise, how wetlands behave, and influencing how much
greenhouse gas escapes to the atmosphere. Scientists now use improved soil sensors, drones, satellites, and
computer models to track these changes from the pore scale to whole regions. The big challenges are connecting
fine-scale ice—water processes to landscape behavior and capturing sudden thaw events that can rapidly reshape
terrain. Better monitoring and models, especially those assessments that combine plants, water, and carbon, will
help communities manage water, protect infrastructure, and plan for climate change in cold places.

1. Introduction

Frozen soil, including seasonally frozen ground (SFG) and permafrost (perennially frozen ground), covers
roughly 20% of the Earth's land surface (G. Hu et al., 2023), including 55%-60% of the Northern Hemisphere
(T. Zhang et al., 1999), 75% of China (T. Zhang et al., 1999) and 90% of Russia (Kudryavtsev, 1977) (Figure 1).
The presence or absence of ice in soil pores directly affects soil thermal and hydraulic properties, water and
energy balances, and even local climates (Poutou et al., 2004) (Figure 2). For example, ice-filled pores and lenses
can block infiltration and evaporation, triggering floods and increasing infrastructure damage (A. N. Gel-
fan, 2010), yet these processes may also increase topsoil moisture, benefiting crops and ecosystems. Under-
standing freeze-thaw (FT) dynamics and its effect on hydrological processes is also important in high-latitude and
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high-altitude environments where the active layer above permafrost seasonally freezes and thaws. Additionally,
FT processes are becoming increasingly important as permafrost regions transition to SFG under climate change.
Understanding frozen soil hydrology and its mechanical, biogeochemical, and ecohydrological processes is
essential, but complex FT dynamics, soil heterogeneity, ice formation, and surface and subsurface water in-
teractions complicate monitoring and modeling efforts.

Over recent decades, climate warming has reduced SFG and permafrost extent in the Northern Hemisphere by
roughly one-tenth (J. Li et al., 2021; Obu et al., 2019), with additional implications for hydrological, geotechnical,
and biogeochemical processes. Rapid snowmelt infiltration into thawing soils leaches nutrients, degrading
groundwater and surface-water quality and intensifying erosion and sediment loads (Hayashi, 2013). Warmer
groundwater and soils driven by rapid increases in air temperature threaten water quality, groundwater-dependent
ecosystems, and ground stability (Figura et al., 2011; Kurylyk et al., 2014). Similarly, permafrost degradation
reduces soil strength, increases subsidence risks, and modifies carbon cycles (Chen et al., 2021; S. L. Smith
et al., 2022). With permafrost regions storing over 50% of global soil organic carbon (~1,700 Gt) (Miner
et al., 2022), thawing permafrost can release carbon dioxide (CO,), methane (CH,), and dissolved organic carbon
(DOC), thereby accelerating positive climate feedbacks (Harden et al., 2012; Hjort et al., 2018; Hugelius
et al., 2020; E. A. Schuur et al., 2015). As a result, frozen soil hydrology is increasingly viewed as a critical
component of the Earth system, with its responses to warming potentially acting as a tipping element in the global
climate (Natali et al., 2021).

Research on frozen soil hydrology is inherently interdisciplinary, linking soil physics, hydrology, geocryology,
climatology, and ecology. Despite the importance of frozen soil on global-scale processes (e.g., carbon-climate
feedbacks), its hydrological processes have long been under-represented in global studies. As such, there is an
urgent need to describe key frozen soil hydrological processes, controlling factors, and associated research
challenges and opportunities. In response, a structured bibliometric scan was conducted and complemented by
expert synthesis (Figure 3). Three thematic clusters emerged: (a) key parameters and modeling; (b) hydrological
processes; and (c) climate change. These clusters were used to structure Sections 2—6, which review the advances
in the theory, quantification, and applications of frozen soil hydrological processes, and identify recommenda-
tions for future research directions.

This review advances frozen-soil hydrology by (a) integrating SFG and permafrost into a single framework that
unifies infiltration regimes, macropore flow, and advective heat transfer; (b) providing a practical parameteri-
zation guide that aligns water retention curves with thermal and hydraulic conductivities and ice-impedance,
including dual-domain options; (c) setting out a tiered modeling roadmap, from process-level to intermediate-
complexity to land-surface/Earth-system models, with explicit data and evaluation targets; and (d) making
explicit links between thaw-driven groundwater connectivity, water quality, carbon—energy feedbacks, and
infrastructure risks.

2. Processes of Water Flow and Heat Transfer in Frozen Soil

Frozen soil physics addresses how water and heat interact, move, and accumulate in frozen ground under the
influence of climate, soil properties, and vegetation. Key processes include soil FT cycles, infiltration, runoff
generation, evapotranspiration, moisture redistribution via cryosuction (i.e., the upward suction of water toward
freezing fronts), and the interactions with groundwater. These soil FT cycles profoundly affect ecological sys-
tems, nutrient cycles, and infrastructure integrity (Figure 2). While individual processes are relatively well un-
derstood, considerable uncertainty remains regarding their interactions and feedback mechanisms.

2.1. General Issues of Frozen Soil Physics and Hydrology

Frozen soil consists of solid particles, ice, liquid water, and air (Figure 4). The coexistence of ice and liquid water
markedly alters soil hydrothermal properties, mechanical strength, and heat and moisture exchanges with the
atmosphere (Farouki, 1986; Hansson et al., 2004; Lawrence & Slater, 2008; Lundin, 1990; Nitzbon et al., 2020).
Ice, with a thermal conductivity four times that of water, strongly influences the soil thermal regime, whereas pore
ice blocking water pathways greatly reduces hydraulic conductivity. The presence of ice also increases soil
volume (frost heave) and cementation, thus affecting mechanical stability.
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Figure 1. Frozen soil distribution of the Northern Hemisphere, China, and Russia. The map illustrates the extent of permafrost (continuous, discontinuous, sporadic) and
seasonally frozen ground. Data source: National Cryosphere Desert Data Center (http://www.ncdc.ac.cn) and synthesis of recent permafrost maps.

Water in frozen soils moves through hydraulic gradients and vapor diffusion. As freezing draws liquid to form ice
lenses, thawing releases stored water, sharply raising soil moisture. Appropriate estimations of ice content are
therefore critical to predicting frozen soil behavior (G. Hu et al., 2020; T. Hu et al., 2020). Methods include
energy-balance approaches using latent heat (Jansson, 2012) and freezing-point depression analysis via the
Clausius—Clapeyron equation (Hansson et al., 2004), though the latter may not be accurate under non-equilibrium
conditions (Kurylyk & Watanabe, 2013). Frozen soils also exhibit very high apparent heat capacity, releasing or
absorbing ~80 times more energy during phase change than water during normal heating, which buffers soil
temperature and redistributes energy (Lawrence & Slater, 2008; Poutou et al., 2004; Viterbo et al., 1999). Recent
studies further highlight the importance of non-conductive heat transfer. For example, the advective heat transport
by liquid water and vapor may dominate under conditions of preferential flow and high permeability, especially
during snowmelt infiltration or rain-on-snow events (Kurylyk et al., 2014; Yu et al., 2018). These findings
demonstrate that conductive-only representations systematically underestimate active-layer thaw depth, zero-
curtain persistence, and rates of permafrost thaw (Devoie et al., 2021).

Two principal theories govern water and heat transport in frozen soils. First, the soil water potential theory,
dominant since the 1960s, posits that differences in soil water potential drives water movement, using the
Clausius-Clapeyron equation to link ice content with sub-freezing temperature or pressure (Kurylyk & Wata-
nabe, 2013). Second, the hydrodynamics theory identifies three drivers of water transport: water movement, heat
transfer, and phase changes (H. Ran et al., 2019). Despite their conceptual differences, both theories provide
essential frameworks for modeling thermal-hydraulic interactions in frozen soils. Nonetheless, no universally
accepted theory fully captures FT processes, highlighting the need for continued theoretical refinement and
validation (Endrizzi et al., 2014). In particular, recent intercomparisons of thermo-hydrologic models show large
discrepancies in predicting soil ice content and thaw depth, driven by differences in freezing-curve parameter-
izations and treatment of unfrozen water (Bui et al., 2020; Grenier et al., 2018). These discrepancies underscore
the critical role of parameterization in reducing uncertainty. Hydrodynamic models, for instance, do not explicitly
address frost heave which is linked to heat and water movement in saturated soils during freezing (Guymon
et al., 1980; K. O'Neill & Miller, 1985), but have been proven to be effective for simulating active-layer hy-
drology (Cao et al., 2021).
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Figure 2. The conceptual model of hydrological processes in frozen soil regions under (a) current and (b) future conditions.
Schematic of permafrost-dominated (left) versus seasonally frozen ground (SFG) watersheds (right). Permafrost impedes
infiltration, concentrating surface runoff and shallow flow; SFG thaws annually, enabling deep recharge, higher year-round
baseflow, and greater soil-moisture storage despite a shallow winter frozen layer.

2.2. Water-Cycle Mechanisms in Frozen Soils

Soil FT processes significantly impact soil moisture regimes, thermal properties, evaporation, infiltration, albedo,
texture, and structure (Frampton & Destouni, 2015; Nitzbon et al., 2020), thereby influencing water and energy
exchanges with the atmosphere (Viterbo et al., 1999). Interactions between groundwater and surface water in
frozen soils can shift recharge and discharge zones, promote thermokarst formation, and increase river baseflow
as the permafrost degrades (Geyman et al., 2024; J. Li et al., 2021; J. Xie et al., 2024). Together, these studies
indicate that once ice content exceeds a threshold, infiltration dramatically decreases and water movement shifts
to increased runoff.
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Infiltration into frozen soils is governed by a continuum of regimes from unrestricted percolation (gravity-driven)
to limited or restricted infiltration where capillary forces and ice blockage impede water entry. Soil texture,
antecedent moisture content, frost depth, temperature gradients and midwinter refreeze events all modulate hy-
draulic conductivity and gas diffusion (Appels et al., 2018; Granger et al., 1984; Gray et al., 2001; Johnson &
Lundin, 1991; Kane & Stein, 1983). Threshold behaviors have been observed experimentally, wherein slight
changes in FT status or soil texture cause abrupt shifts between infiltration regimes (Sanchez-Rodriguez
et al., 2025; Stuurop et al., 2022). High ice content layers formed by antecedent wet conditions significantly
reduce infiltration capacity, leading to increased spring flooding and enhanced surface runoff and erosion, while
drier and/or coarse-textured soils may still maintain preferential macropore flow (Mohammed et al., 2018;
Walvoord & Kurylyk, 2016). Recent laboratory experiments confirm that soil texture and antecedent water
content strongly control the formation of impermeable ice lenses and thus influences infiltration capacity during
snowmelt (R. Jiang et al., 2024).

Thawing of SFG increases vertical percolation and lateral redistribution of water, sometimes forming perched
aquifers that modulate snowmelt-driven recharge and summer rainfall infiltration (Bayard et al., 2005; Iwata
et al., 2008). Snowmelt infiltration often penetrates deeper than rainfall infiltration, depending on the snow water
equivalent and melt rate (H. He, Dyck, Si, et al., 2015; H. He, Dyck, Wang, et al., 2015). Preferential flow through
soil macropores and cracks may lead to uneven infiltration and rapid routing of snowmelt in partially frozen soils,
emphasizing the importance of representing such processes in hydrological models (Watanabe & Kugi-
saki, 2017). Frozen soil properties also differ by texture, increasing macroporosity and hydraulic conductivity in
clay soils but reducing these processes in sandy soils (Starkloff et al., 2017). Advancing such macropore—matrix
interaction schemes in models like HydroGeoSphere have improved simulation accuracy but still lack full rep-
resentation of FT effects on flow connectivity (Mohammed, Cey, Hayashi, Callaghan, et al., 2021, Mohammed,
Cey, Hayashi, & Callaghan, 2021).

Snow and vegetation jointly regulate how water moves through frozen ground. Acting as a blanket, snow insulates
the soil, sets frost depth and temperature, and steers the balance between infiltration and runoff. Thus thin
snowpacks oftentimes deepens frost and favor overland flow, whereas thick snow keeps soils warmer and more
permeable, promoting meltwater infiltration (Iwata et al., 2010). Vegetation reshapes these controls by trapping
snow and altering surface insulation, with changes in shading, rooting, and transpiration that modify soil thermal
and moisture regimes (Fu et al., 2018; S. Liu et al., 2021; Woo, 2012). Furthermore, shrub expansion in tundra has
been shown to enhance snow accumulation, deepening the active layer in some regions while stabilizing it in
others, depending on ground-ice content and topography (Domine et al., 2022). These divergent effects highlight
the necessity of explicitly including vegetation—snow interactions in ecohydrological models. As permafrost
thaws, soil moisture and groundwater tables reorganize, enabling shrub and wetland expansion that reinforces
ground warming and accelerates thaw. Capturing these couplings requires watershed-scale models that integrate
ecosystem and hydrologic processes (G. Hu et al., 2023). Figure 2 conceptually summarizes how these processes
interact in frozen soil environments. In essence, frozen soils restrict and redirect hydrologic fluxes, acting as semi-
impermeable layers and conduits upon thaw, exhibiting a behavior that underpins many of the phenomena dis-
cussed in later sections.

3. Current Progress on Frozen Soil Hydrological Processes

Recent studies have greatly improved our understanding of how frozen soils are changing over time and how
hydrologic processes respond. Observations across the circumpolar north and high mountain regions indicate
significant shifts in frozen ground extent and characteristics in response to climate warming.

Figure 3. The network of keyword co-occurrence (>10) in frozen-soil hydrology. Records were retrieved from Scopus on 17 January 2024 using the query: (“Frozen
soil”) AND (“hydrological processes”) AND (modeling OR “climate change” OR agriculture OR ecology OR engineering). We limited to journal articles and reviews in
English. After de-duplicating and screening for hydrology relevance, 1,217 records remained for keyword co-occurrence analysis in VOSviewer (association strength;
minimum keyword occurrences = 10). Counts correspond to the screened corpus to ensure internal consistency. (a) The network highlights three clusters of research
focus: “key parameters and modeling” (orange), “hydrological processes” (green), and “climate change impacts” (purple). The size of nodes reflects keyword
frequency, and connections show frequent co-mention. (b) Temporal trend of publication topics (2000-2022) showing rising interest in integrated modeling and
permafrost hydrology in the last decade: pre-2008 on mathematical modeling and snowmelt runoff; 20082018 on numerical models, infiltration/runoff, permafrost
thaw, and climate change; and post-2018 on unfrozen water content, theoretical modeling, permafrost degradation, climate models, and human impacts on water quality.
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Figure 4. Coexistence of unfrozen water, air, and ice in unsaturated frozen soils. The simplified pore diagrams illustrate how
liquid water (blue) remains in smaller pores due to adsorption and capillarity while larger pores fill with ice (white) as
temperature drops. The right panel shows that during thawing, the percentage of liquid water in pores increases (ice melts
first in larger pores and along grain contacts). These phase distributions affect both thermal and hydraulic properties of the
soil.

3.1. Historical and Projected Changes in Frozen Soils

Historically, warming trends have significantly reduced soil frost depth and duration, particularly at high altitudes
and latitudes. For example, seasonal frost depth on the Tibetan Plateau decreased by 4-12 cm per decade,
triggering earlier spring thaw, altered runoff, and ecological shifts (Zhao et al., 2004). In northern Canada, un-
precedented winter rain and melt events have caused mid-winter flooding and ice jams (Prowse et al., 2007).
Satellite and ground data indicate the number of freezing days per year in the Northern Hemisphere have
decreased by about —0.17 d yr~' (Yuan et al., 2025), reflecting shorter seasonal freeze periods and later
freeze-up/earlier thaw dates in many regions. The extent of permafrost has also measurably declined with recent
syntheses showing continuous permafrost has warmed by 0.3-0.4°C per decade since the early 21st century
(Biskaborn et al., 2019), and discontinuous permafrost boundaries have retreated poleward and upslope (S. L.
Smith et al., 2022). Notably, high-resolution reconstructions reveal that under high-emission scenarios, up to 77%
of near-surface permafrost may vanish by 2100 (D. Guo et al., 2023). These findings confirm that permafrost is
one of the most sensitive climate indicators.

Rapid glacial melting and permafrost thaws are altering land cover (O. Carpino et al., 2021), by reshaping water
distribution and runoff patterns (Nitze et al., 2018). Thaw rates are particularly rapid in discontinuous permafrost
zones due to both vertical and horizontal heat transfer processes, significantly transforming regional hydrology
(Connon et al., 2021; Wright et al., 2022). In mountain permafrost areas, new data sets reveal widespread accel-
eration of rock glaciers in response to warming, indicating that debris-covered ice bodies act as important,
climatically sensitive cryoreservoirs with implications for water supply in semi-arid regions (Kéib & Rgste, 2024).

3.2. Hydrologic Responses to Frozen Soil Changes

Soil FT states strongly control hydrological responses. In SFG areas, reduced frost depth enables earlier thaw,
enhancing infiltration, moderating spring runoff peaks, and increasing soil moisture recharge (X. Wu et al., 2018).
However, mid-winter thaw events may amplify winter runoff. In permafrost regions, thaw increases subsurface
permeability, influencing the transition of runoff processes from surface-dominated to deeper groundwater
pathways via talik formation (Figure 2; Jepsen et al., 2016; Rawlins & Karmalkar, 2024). Permafrost thaw
typically increases groundwater recharge and baseflow, as has been demonstrated in regions like the Yangtze
River source (Shi et al., 2020), Tibetan Plateau (Gao et al., 2018), and Yukon Basin (Jepsen et al., 2016). This
transition generally stabilizes streamflow with more year-round baseflow and less extreme peaking that alters
aquatic ecosystems (Michel & van Everdingen, 2006). A pan-Arctic synthesis confirms that permafrost thaw is
broadly increasing groundwater contributions to streamflow across the Arctic that fundamentally enhances year-
round groundwater connectivity and reduces hydrologic seasonality (Walvoord & Kurylyk, 2016). Spatial
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variability in permafrost and ground ice distribution (Lacelle et al., 2022) complicates predictions, with thaw
causing drier upland soils (as newly opened drainage allows water to percolate; Y. Yang et al., 2013) or
contributing to wetter lowland ecosystems such as wetlands and lakes (E. A. G. Schuur & Mack, 2018).

Model projections show shifts toward groundwater-dominated streamflow regimes under future warming
(Gordon et al., 2022). In the Arctic, cold-season flows are expected to increase, while spring peaks become earlier
and less pronounced as subsurface drainage expands (Bring et al., 2016; Koch et al., 2024). On the Qinghai—Tibet
Plateau (QTP), deepening active layers reduce summer runoff in some basins, even while total annual discharge
increases elsewhere due to enhanced baseflow contributions (Gao et al., 2018). Recently, Tang et al. (2023)
reported that surface darkening by black carbon and dust has hastened glacier melt, perturbed regional water
cycles, and heightened downstream scarcity risks. Together, these results highlight why frozen-ground processes
must be represented explicitly in water-resource projections. Outcomes will still depend on local conditions, such
as ice content, soil texture, and vegetation change, but the weight of evidence points to a regional transition toward
more groundwater-dominated flow regimes under continued thaw (Walvoord & Kurylyk, 2016).

3.3. Differences and Links Between Hydrological Processes in Permafrost and SFG

Hydrological processes differ between SFG and permafrost due to variations in the permanence and depth of the
frozen layer (Figure 2). Permafrost, which acts as an impermeable barrier below the active layer, limits
groundwater recharge and emphasizes surface runoff. In contrast, SFG permits deeper infiltration and higher
baseflows when thawed, briefly mimicking permafrost conditions in winter (a shallow frozen layer creating
runoff over frozen ground), but this state is seasonal and reversible. Permafrost thaw, accelerated by climate
change, creates subsurface pathways (taliks) that enhance year-round groundwater flow (Diak et al., 2023; Koch
et al., 2024). Recent studies (e.g., Shi et al., 2020; L. Song et al., 2022), show that permafrost thaw increases
baseflow and total annual runoff in Arctic catchments, while thaw in SFG areas reduces runoff by promoting
infiltration and evapotranspiration. These shifts illustrate a transition from surface-dominated to groundwater-
driven hydrology as permafrost degrades.

Regionally, permafrost thaw on the QTP leads to drier conditions, contrasting wetter conditions in Alaskan and
Siberian Arctic wetlands (Bense et al., 2009; S. G. Evans & Ge, 2017; Farquharson et al., 2022; Hinzman
et al., 2005). Figure 5 contrasts Arctic lowland versus QTP alpine settings and illustrates anticipated climate
driven shifts in hydrologic partitioning. In the QTP's alpine meadows and headwaters, enhanced infiltration into
deepening active layers can lower the near-surface soil moisture and reduce immediate subsequent runoff,
sometimes resulting in declining streamflow observed in certain basins (X. Wu et al., 2018; Q. Yang et al., 2018).
By contrast, in lowland Arctic tundra, ice-rich permafrost thaw often creates thermokarst bogs and ponds,
increasing surface water storage and baseflow (A. Smith et al., 2019). Despite differences, both SFG and
permafrost regulate water availability through FT cycles, with seasonal frost acting as a temporary analog to
permafrost, especially under warming-induced transitions (Gao et al., 2018).

Beyond the Arctic, rock glaciers in mountain regions act as debris-insulated cryoreservoirs. A global inventory
(>51,000 rock glaciers) estimates they store ~62 = 12 Gt of water, with major contributions in the Andes and
Central Asia (D. B. Jones et al., 2018). Their resilience to warming compared to clean glaciers makes them
increasingly important for downstream water security. Yet, their role is rarely represented in hydrological models,
representing a key research gap.

3.4. Permafrost-Groundwater Interactions and Feedbacks

The interactions between permafrost and groundwater are an emerging frontier in cold-regions hydrological
processes (Lemieux et al., 2025). Climate change has increased groundwater recharge, enhanced groundwater
flow, and raised baseflow contributions to streams in permafrost regions (Kuang et al., 2024; Zhao & Li, 2025).
Permafrost strongly regulates groundwater movement, with continuous permafrost limiting deeper, sub-
permafrost groundwater flow and discharge mainly occurring via shallow taliks or supra-permafrost pathways
(Woo, 2012). In discontinuous permafrost, thawing forms extensive lateral taliks that increase hydraulic con-
nectivity and can dramatically alter subsurface flow paths (van Tiel et al., 2024). Newly activated groundwater
flow can increase heat transport that further accelerates permafrost thaw via advective heat transfer, generating a
positive feedback (Connon et al., 2018; Devoie et al., 2021; J. M. McKenzie et al., 2007).
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Figure 5. Contrasting hydrological impacts of thaw in (a) Arctic versus (b) Qinghai-Tibet Plateau (QTP) regions. Schematic
(not to scale) of thaw impacts: (a) Arctic lowlands—subsidence and thermokarst wetting increase winter flows and CH,;
(b) QTP alpine—thaw deepens infiltration and groundwater connectivity, lowering near-surface moisture and reducing
shallow headwater flow. Snowmelt occurs earlier in both; on the QTP, mid-summer runoff may decline with greater
evapotranspiration and storage, reflecting climate, and topographic controls.

Despite its importance for water supply and coupling to permafrost thaw, the lack of direct groundwater mea-
surements in permafrost areas hinders progress in resolving highly coupled processes (e.g., hydrological,
geotechnical, biogeochemical). Thaw-induced groundwater dynamics significantly alter streamflow patterns,
posing challenges for accurate modeling due to limited subsurface data and simplified modeling approaches
(Wright et al., 2022). Identifying permafrost thaw tipping points (i.e., thresholds beyond which thaw is irre-
versible) is critical for predicting hydrological impacts and ecosystem transformations (Devoie et al., 2019). New
geophysical imaging and isotopic tracer studies demonstrate that once taliks beneath rivers or lakes connect with
regional aquifers, hydrological regimes shift irreversibly (Painter et al., 2023). Identifying such thresholds is
essential for predicting landscape-scale hydrological change and its associated feedbacks.

4. Effects and Implications of Frozen Soil Hydrological Processes

Frozen soil hydrology shapes agriculture, engineering, ecology, and climate by controlling water flow, nutrient
release, and soil stability (Figure 6). Rapid snowmelt infiltration can impair water quality and increase erosion,
while FT cycles and greenhouse gas (GHG) emissions alter ecosystems, carbon storage, and climate feedbacks.
Ice-filled pores may block infiltration, cause floods and infrastructure damage, yet also boost soil moisture for
crops. Climate warming further raises soil and groundwater temperatures, threatening water resources, ecosys-
tems, and infrastructure.

4.1. Agricultural and Soil Salinity Issues

Agriculture faces unique challenges with frozen soils due to their seasonal FT behavior and resulting effects on
soil moisture and structure. FT processes affect runoff and erosion: when soil is frozen, snowmelt or rain can run
off directly, exacerbating spring erosion in farmlands. Ice in soil disrupts pore size distribution, increasing erosion
risk (Six et al., 2004). However, FT cycles can break up soil aggregates and reduce the soil density of the plow pan
layer, increasing water infiltration into deep soil. More research is needed to quantify frost's effects on porosity
and the role of soil texture and chemistry (Mohammed et al., 2018).

In agricultural peatlands, drainage of water for cultivation turns organic soils into carbon sources year-round, but
water table depth (WTD) remains a key factor for greenhouse gas emissions, offering potential for emission
reductions without halting agriculture. For instance, halving the WTD could potentially lower emissions by over
1% of global anthropogenic GHG emissions (C. D. Evans et al., 2021). Thaw-induced shifts in WTD remain
highly uncertain: in some landscapes thaw impedes drainage and raises WTD, while in others it opens subsurface
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GHG emissions due to
frozen soil thawing

flow paths and lowers WTD, leading to divergent outcomes for both crop
viability and soil carbon balance (Walvoord & Kurylyk, 2016).

In mountainous regions, multi-cropping irrigated systems rely on snow and
glacier melt to regulate seasonal river flows for agriculture (Biemans
et al., 2019). Changes in frozen soil can modify these meltwater delivery
patterns. Land use practices also impact heat and water distribution, partic-
ularly during snowmelt and FT cycles. For example, winter livestock grazing
can alter the surface roughness and insulation, creating a layered soil/snow
structure that promotes horizontal water movement during spring thawing
(Zhao et al., 2016). Agrohydrology research often focuses on soil water
supply and crop yields in summer time, with less emphasis on snowmelt and
runoff dynamics. Practices like leaving crop residues influence snowmelt and
sublimation by altering microclimates, but their effects on water cycles during
snowmelt remain unclear (J. Liu & Lobb, 2021). Declining snowfall reduces
the insulating effect of snow cover on winter wheat, thereby increasing yield
losses from freeze injury even as warmer winters reduce extreme cold damage
(P. Zhu et al., 2022). This behavior suggests that hydrological changes linked
to frozen soils may offset some benefits of climate warming for agriculture.

Salinity governs freezing and coupled water—heat transfer through freezing-

Climate chang® point depression and the thermodynamics of coexisting ice-liquid—salt pha-

ses (Rouabhi et al., 2018). Higher salt lowers water activity and depresses the

Figure 6. Effect of freeze-thaw cycles on ecological, agricultural, freezing point (Ming et al., 2020), while FT drives water and solute redis-

engineering, and environmental practices in cold regions. Schematic
example, infrastructure on permafrost experiences ground settling when ice-
rich permafrost thaws (damaged road illustration).

tribution that concentrates salts at the surface; irrigation can intensify this
cycling by adding water and ions (Qin et al., 2021). Field studies from
Northeast China show that repeated FT cycles exacerbate topsoil salinization
by mobilizing salts upward, threatening crop productivity unless countered by leaching or soil amendments (Qin
et al., 2021). Management therefore centers on water control: fall leaching and controlled freezing (“cry-
odesalination”) show promise as management options. Winter saline-water freezing irrigation in the Hetao
District lowered topsoil salinity and indicates a potential use of saline groundwater where freshwater is scarce,
though long-term thresholds need testing (K. Guo & Liu, 2021).

4.2. Engineering Practice and Subsidence

Engineering in cold regions must contend with the challenges posed by frozen ground. SFG damages transport
infrastructure as FT cycles crack pavements and de-icing salts lower the freezing point, altering freezing patterns
and amplifying frost heave (Ozsoy & Yildirim, 2016). In permafrost regions, infrastructure like buildings,
pipelines, and roads are vulnerable to thawing permafrost (Y. Ran et al., 2022) which causes ground settling and
destabilization, leading to structural damage (Harris et al., 2009). Rapid climate change exacerbates permafrost
degradation, threatening northern infrastructure with thaw slumps in ice-rich terrains (Kokelj et al., 2015) and
Arctic coastal communities with shoreline loss due to warming, salinity, and sea-level rise (Creel et al., 2024; A.
Gelfan et al., 2024; Nielsen-Englyst et al., 2023). Ice-rich permafrost thaws slower due to latent heat but poses
greater risks of subsidence once thawed (Walvoord & Kurylyk, 2016). Recent reviews highlight that 30%—50% of
Arctic infrastructure is at high risk from thaw-related damage by 2050 (Hjort et al., 2022), with projected
maintenance and reconstruction costs reaching hundreds of billions of dollars.

Unevenly distributed excess ice forms lenses and wedges, causing non-uniform subsidence and thermokarst for-
mation upon thawing. While thermokarst lakes in Arctic lowlands amplify subsidence and thaw through positive
feedback, Painter et al. (2023) found these effects self-limit over time as increased runoftf and evapotranspiration
dries the tundra, reducing surface-atmosphere coupling and slowing subsidence. Abrupt permafrost thaw,
particularly involving excess ice, can cause significant ground subsidence and ecological changes, altering hy-
drology. Subsidence from permafrost thaw ranges from 0.4 to 1.7 cm yr™" in regions like the Mackenzie Valley and
Alaska's coastal plains, reaching up to 7.5 cm yr~' in Canada's High Arctic regions where sparse vegetation offers
little protection (Farquharson et al., 2019; H. B. O’Neill et al., 2023; Shiklomanov et al., 2013). Thawing
permafrost and newly connected aquifers further trigger seepage and flooding in once-stable corridors, threatening
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rail beds and culverts and demanding improved drainage and groundwater management (Kurylyk & Hay-
ashi, 2016; X. Wu et al., 2018). However, thawing ice-rich peat causes land subsidence and thermokarst wetland
formation (Fahnestock et al., 2019), significantly modifying local hydrology and nutrient cycling that are often
accelerated by human disturbances and wildfires (Chadburn et al., 2017; Wright et al., 2022).

Understanding coupled thermo-hydro-chemo-mechanical soil behaviors is critical for hazard mitigation and
adaptation, both in seasonally frozen and permafrost environments. Engineers mitigate these effects by using non-
frost-susceptible materials, installing insulation or thermal siphons to preserve permafrost, or actively heating the
ground to prevent FT cycles. Designs once assumed continuous, cold permafrost as a stable foundation, but
warming now demands active thermal controls such as piles, thermosiphons, and insulation (Hjort et al., 2022).
Emerging approaches emphasize dynamic adaptation, including flexible foundation design, improved surface and
subsurface drainage management, and integration of permafrost monitoring into infrastructure planning (Y. Ran
et al., 2022). In addition, improved hydro-thermal-salinity models can guide artificial ground freezing in coastal
underground engineering and help address spatial variability in hydrothermal properties for water-rich strata
(K. Q. Li et al., 2023).

4.3. Ecological Significance and Vegetation Shifts

Vegetation dynamics both shape and respond to frozen-soil hydrology, establishing coupled ecohydrological
feedbacks across seasons to decades. Vegetation type, structure, and spatial pattern regulate snow accumulation/
redistribution, ground insulation, frost depth, and soil-moisture regimes, thereby modulating permafrost stability
and active layer thickness (ALT) (Fu et al., 2018; Z. Liu et al., 2021; Woo, 2012). Thaw-driven redistribution of
water and nutrients drives compositional shifts (e.g., birch/black-spruce to wetlands and shrub-to-graminoid
transitions) consistent with co-occurring boreal browning and high-latitude greening signals (O. A. Carpino
et al., 2018; Verbyla, 2011). While changes to vegetation structure driven by permafrost can readily be detected
via remote sensing techniques, the hydrological implications are more difficult to discern (O. Carpino
et al., 2025), requiring further research to ground-truth remote sensing products.

Groundwater—surface water connectivity exerts seasonal thermal control on streams: diffuse discharge stabilizes
temperatures, whereas focused discharge forms cold-water refugia for aquatic species (Kurylyk et al., 2014).
However, long-term groundwater warming threatens lotic ecosystems and cold-water fish species (Kanno
etal., 2014). In cases where permafrost thaw results in draining and drying of wetlands (e.g., Haynes et al., 2018),
lakes (e.g., Lantz & Turner, 2015), and rivers, aquatic habitats are further at risk. However, recent evidence also
links permafrost thaw to widespread wetland expansion, with significant implications for methane emissions and
migratory bird habitats (Helbig et al., 2020).

Vegetation—snow interactions create bidirectional feedbacks: in shrub-free tundra, enhanced summer insulation
can dampen ALT deepening, whereas snow trapping in shrublands tends to deepen ALT depending on local ice
content and microtopography (Domine et al., 2022); taller canopies increase snow storage and alter recharge
(Y.Wang et al., 2022; Young et al., 2020). Responses diverge with ground-ice content and topography (e.g.,
woody encroachment in ice-poor uplands vs. abrupt-thaw graminoid replacement in ice-rich lowlands, Heijmans
et al., 2022) and across regions, from boreal/tundra biomes to alpine meadows and steppes of the QTP (Z. W.
Wang et al., 2016). Together, these pathways highlight ALT as a sentinel of permafrost change and motivate the
use of integrated, watershed-scale models that couple vegetation, snow, groundwater, and energy fluxes.

4.4. Environment and Water Quality

Frozen-ground dynamics regulate river and lake water quality by rerouting shallow and deep flow paths,
reshaping connectivity, and mobilizing sediments and solutes (Rau et al., 2014). Thawing permafrost also opens
new groundwater pathways and alters runoff regimes, thus increasing the risk of mobilizing contaminants stored
at landfills, mines, and industrial facilities (T. McKenzie et al., 2021). Recent assessments reveal that permafrost
regions host thousands of contaminated sites whose containment depends on frozen ground integrity, posing
rising risks under current projections of climate warming (Langer et al., 2023). However, competing thermal—
chemical-hydrological processes can result in opposing effects on water quality. For example, solute concen-
trations depress the freezing point which can increase frozen soil permeability and solute transport, while soil
warming can increase microbial activity that can enhance rates of biodegradation that slow solute transport
(Mohammed, Cey, Hayashi, Callaghan, et al., 2021). Representing these competing solute transport processes in
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Figure 7. Schematic diagram of freeze-thaw process in permafrost region under the influence of rising temperature.

(a) Current climate: thin active layer over continuous permafrost (blue). (b) Warming: thicker active layer, some permafrost
converting to seasonal frost (hatched). (c) Future warming: active layer disappear, seasonally frozen layer remains with
almost loss of permafrost, groundwater flows freely.

predictive models remains challenging, thereby limiting the ability to predict the effects of thawing frozen soils on
water quality.

Climate-driven subsurface warming alters biogeochemical reaction rates and water chemistry, while increased
groundwater—surface water connectivity from permafrost thaw increases total dissolved solids, electrical con-
ductivity, and major-ion concentrations (Frey & McClelland, 2009) that help mobilizes geogenic contaminants
such as arsenic and uranium (Skierszkan et al., 2024). Permafrost peatlands store Hg that can be microbially
converted to methylmercury (MeHg), with higher production during bog-to-fen transitions (Fahnestock
etal., 2019; Osterwalder et al., 2017). Alternately MeHg export likely tracks DOC-mediated transport and runoff
variability (Thompson et al., 2023; Wright et al., 2022). A further pathway of carbon and water-quality change
arises when reactive Fe minerals that stabilize organic carbon dissolve under reducing, water-logged thaw
conditions, releasing DOC and Fe that are subsequently exported during precipitation events, as has been
observed at Stordalen Mire, the Peel Plateau, and Imnavait Creek (Barker et al., 2023; Patzner et al., 2020;
Thomas et al., 2023). These effects may be exacerbated by wildfire, where flow through charred soil can mobilize
nutrients, carbon, and bound metals to streams, occasionally leading to eutrophication or high DOC in rivers after
big fire years (Paul et al., 2022). Together, these lines of evidence argue for coupled thermo-hydrological-
biogeochemical models to predict contaminant and carbon fate and to guide protection of northern ecosys-
tems, food webs, and freshwater.

4.5. Climate Change and GHG Emissions

Frozen soils play a controlling role in coupled carbon—energy—hydrology feedbacks (E. A. Schuur et al., 2022).
Permafrost thaw can increase moisture and nutrients that stimulate plant uptake, yet decomposition of newly
thawed organic matter releases CO, and CH,, that reinforces warming (e.g., methane-producing archaea in
thawing peat) (E. A. Schuur et al., 2015). Concurrently, permafrost degradation alters snow and vegetation re-
gimes, shifting surface albedo and atmospheric energy exchanges (Tang et al., 2023). Warming and precipitation
change the dynamics of ALT and permafrost extent (Y. Song et al., 2017), reorganizing surface-subsurface
connectivity, lake/soil water storage, and carbon mobilization (Bring et al., 2016; G. Wang et al., 2024)
(Figure 7). Where regional heterogeneity will dictate whether areas dry with thaw (e.g., the QTP), enhancing soil
oxygenation and biasing emissions toward CO, over CH, with the net radiative effect depending on the CO,—CH,
balance and response timescales (Jammet et al., 2017; Lewkowicz & Way, 2019). Peatlands illustrate threshold
behavior, where permafrost is generally protected by the thermal properties of peat, yet once thaw is initiated
rapidly landcover transitions to collapse wetlands/bogs that may release large carbon stores (Du et al., 2022;
Turetsky et al., 2020; S. Yi et al., 2007) (Figure 8). Long-term flux measurements indicate winter CO, losses
(1,662 Tg C yr™ ') already exceed growing-season uptake (1,032 Tg C yr™"), and wildfires further add ~13.2 Pg
CO, over 1997-2021 (X. Zhu et al., 2024). Abrupt thaw processes (e.g., thermokarst lake expansion) can greatly
amplify permafrost carbon release, in some cases tripling the emissions expected from gradual thaw alone
(Turetsky et al., 2020). These changes underscores why models need to represent these processes: without them,
future high-latitude carbon feedbacks may be severely underestimated (Schidel et al., 2024). Including
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Figure 8. Permafrost peatland thaw progression showing shifts from intact permafrost to bogs (partially thawed, subsidence
with water accumulation) and fens (fully thawed, inundated) and the resulting dynamics of carbon release. The diagram
indicates how initially dry, elevated palsa (with permafrost) transitions to a wet bog with some permafrost, then to a fen
without permafrost. Methane (CH,) and carbon dioxide (CO,) fluxes increase as conditions become wetter and anoxic in the
bog/fen stages, while vegetation shifts from lichens and shrubs on palsas to sedges and mosses in fens. Pore water
concentrations (pH; sulfur, S; electrical conductivity, EC; dissolved organic carbon, DOC), measured mercury (Hg) and
methylmercury (MeHg) concentrations also change, with thaw-related wetland expansion often leading to higher MeHg
production (noted by symbols).

thermokarst processes implies thaw-affected carbon release may increase up to threefold under RCP4.5 and
twelvefold under RCP8.5 (Nitzbon et al., 2020).

Beyond CO, and CH,, FT pulses may produce significant N,O bursts from permafrost peatlands (Voigt
et al., 2020), with additional microbial and geochemical controls (Hodgkins et al., 2014). Soil undergoes transient
biophysical changes during FT and wetting-drying (WD) cycles (Figure 9), influenced by anaerobic duration,
microbial sensitivity to temperature, gas diffusivity, and soil moisture dynamics. Although both cycles disrupt
soil structure and increase nitrous oxide (N,O) emissions, FT cycles often cause greater disruption due to ice
crystal expansion (Denef et al., 2001). Gas solubility rises during freezing, reducing N,O degassing, while
thawing increases degassing and N,O flux (Wagner-Riddle et al., 2010). W. Zhang et al. (2026) show that winter
precipitation controls N,O during FT cycles with low precipitation causing strong surface pulses, while high
precipitation shifts N,O to deeper soils and suppresses surface fluxes through denitrification and reduced gas
diffusion. Addressing such complex phenomena requires advanced observation and modeling capabilities, which
is further discussed in the next section.

5. Advances in Quantifying Frozen Soil Hydrological Processes

Recent advances have improved frozen soil hydrology research by enhancing monitoring and modeling. Tech-
niques like advanced soil moisture sensors, continuous soil temperature profiling, and geophysical imaging have
expanded capabilities to observe FT processes in situ. Meanwhile, model developments (from detailed process-
based models to large-scale land surface schemes) have increasingly incorporated frozen ground dynamics.
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Figure 9. Model development connecting soil freeze—thaw processes and N,O emissions. Flowchart illustrating how soil
temperature (freeze-thaw cycles) influences microbial activity, gas diffusion, and water—ice distribution, which together
determine N,O production and release. Arrows indicate influences: for example, freezing creates anoxic microsites
(promoting denitrification/N,O), while thaw releases trapped gases. Model components like “snowpack module” (affecting
insulation and gas trapping) and “soil organic matter module” (providing substrate for N,O production) are highlighted.
Black, blue, and red colors indicate the parameterization schemes and simulation processes applied by only wetting-drying
cycles, only freeze-thaw cycles, and both cycles, respectively.

5.1. Technological Advances in Measurements of Frozen Soil Hydrological Variables
5.1.1. Frozen Soil Water Content

Frozen soil water content is now assessed with a hierarchy of methods spanning point, plot, and landscape scales,
each with distinct observables, biases, and integration needs (Table 1). At the point scale, thermal-resistance
temperature probes, differential scanning calorimetry, time-domain reflectometry (TDR), dual-probe heat-
pulse, and nuclear magnetic resonance (NMR) have improved estimates of unfrozen water in partially frozen
soils (Bittelli et al., 2003; Watanabe & Wake, 2009; X. Zhou et al., 2014). Errors often arise when ice signatures
are misclassified as liquid water, motivating adaptations such as minimal-melting protocols, latent-heat-aware
inversions, and numerical calibration schemes (H. He, Dyck, Si, et al., 2015; H. He, Dyck, Wang, et al., 2015;
Kojima et al., 2013; Ochsner & Baker, 2008; Tokumoto et al., 2010). DPHP improves thermal inference but
remains underused in peat-rich or saline settings (Zhao & Si, 2019). A new constant-temperature heat-source
method further reduces probe overheating and enables robust ice-content estimation at very low temperatures
(X. L. Wu & Zhao, 2024).

Because FT cycles reorganize water and ice, tracking state variables beyond volumetric water content is critical.
Matric potential shows strong hysteresis between freezing and thawing phases but remains sparsely documented
across soil types (H. Tian et al., 2014; Whalley et al., 2013; X. Zhang et al., 2016; Zhao et al., 2021). NMR directly
partitions liquid and ice fractions, while dielectric sensors often require pairing with neutron moderation tech-
niques to separate phases (J. Yi et al., 2014; X. Zhou et al., 2014). Salinity complicates interpretation by
depressing freezing points; dielectric permittivity—conductivity models show promise in saline clays but need
wider validation (H. Liu et al., 2020).

At broader scales, distributed and remote approaches bridge point data to landscape processes. Ground-
penetrating radar (GPR) resolves stratigraphy and ice lenses; cosmic-ray neutron probes integrate hydrogen
across tens of hectares, linking in situ sensors with satellite footprints (Mwangi et al., 2020). Passive microwave
missions (SMAP, AMSR-E) detect FT transitions via emissivity changes, while active microwave sensors
(scatterometers, SAR) map dielectric shifts linked to unfrozen water in permafrost terrains (Rautiainen
et al., 2016; G. H. Zheng et al., 2019). Distributed temperature sensing (DTS) and active-heated fiber optics
provide high-resolution spatiotemporal records of freezing fronts (Seyfried et al., 2016; B. Wu et al., 2021).
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Frequency-domain reflectometry can outperform traditional TDR in partitioning ice and liquid water (Bittelli
et al., 2004). Water-potential approaches (Chuvilin et al., 2022) and unmanned aerial vehicle (UAV) platforms
(Nakata et al., 2021) are emerging, further diversifying the toolkit for mapping frozen soil moisture.

5.1.2. Active Layer Thickness and FT Dynamics

Monitoring ALT and its dynamics has also advanced rapidly (Clayton et al., 2021). Conventional methods, such
as mechanical probing and borehole thermistor arrays, remain reliable for point data but lack spatial continuity.
Geophysical surveys now fill this gap where electrical resistivity tomography (ERT), electromagnetic induction
(EMI), and seismic refraction provide continuous profiles of subsurface FT states. GPR and EMI are particularly
useful for delineating shallow permafrost: GPR identifies dielectric contrasts between frozen and unfrozen layers,
while EMI tracks bulk conductivity variations. If the mapped layer refreezes completely in winter, it represents
the ALT (Devoie et al., 2023). While ERT produces detailed vertical sections, it is labor-intensive and GPR
signals can be attenuated in clays and saline soils. Time-Domain Electromagnetics (TDEM) extend depth res-
olution, while surface NMR, especially when combined with TDEM, can successfully map taliks beneath
thermokarst lakes or permafrost bodies (Minsley et al., 2012). Satellite interferometry (e.g., InSAR) now provides
centimeter-scale detection of seasonal subsidence and long-term thaw, enabling regional assessments of
permafrost stability (Zhong et al., 2021). Integration of UAV LiDAR with InSAR further enhances the ability to
monitor permafrost thaw evolution.

Regional-scale integration remains a key challenge. Recent approaches combining cosmic-ray neutron sensing,
fiber-optic DTS, and satellite microwave products demonstrate the potential for multi-platform fusion to scale
point measurements to regional predictions (H. Jiang et al., 2020; Mwangi et al., 2020). Large-scale initiatives,
including NASA's Arctic Boreal Vulnerability Experiment and national permafrost observatories, are integrating
field-based and remote sensing methods to track ALT over extensive transects (Hubbard et al., 2013). Such data
sets are critical for calibrating and validating remote sensing products and constraining ALT models. Comple-
mentary laboratory and tracer studies continue to refine process understanding. Together, these methods represent
arapidly expanding toolkit for frozen-soil monitoring, advancing both fundamental understanding and predictive
modeling of permafrost change.

5.2. Modeling Thermo-Hydrologic Regime of Frozen Soil
5.2.1. Models Describing the Movement of the Freezing/Thawing Front (Stefan Problem)

Predicting the position of the freezing or thawing front, the moving boundary between frozen and unfrozen soil,
has long been treated with Stefan-type formulations that balance latent heat against conductive heat flux under
idealized, one-dimensional conditions and a sharp phase boundary (Koren et al., 1999; Woo et al., 2004). These
analytical solutions are valuable for first-order estimates of frost/thaw penetration and for model benchmarking,
but their assumptions (e.g., uniform soil, purely conductive heat transfer, negligible unfrozen water) are often
violated in natural settings. The zero-curtain phenomenon, where latent heat buffering maintains temperatures
near 0°C for days to weeks, further departs from purely conductive behavior; during this interval non-conductive
heat transport can be quantified with the Péclet number (Pe) (Kurylyk et al., 2014; Yu et al., 2018). Consequently,
unmodified Stefan predictions can misestimate ALT and thaw timing under stratified and/or advective conditions
(Kurylyk & Hayashi, 2016).

Laboratory and field studies show that temperature gradients and cryosuction drive liquid water (and vapor)
toward the freezing front, redistributing moisture and altering hydraulic/thermal properties as pore ice accu-
mulates (Jame & Norum, 1980; H. Ran et al., 2019; Singh & Chaudhary, 1995). To represent this coupling, non-
linear Stefan formulations and numerical schemes have been developed that allow moisture migration to the
freezing front. In practice, ALT is still frequently estimated from Stefan/Neumann solutions for 1-D conduction,
but errors arise from heterogeneity, layered media, and variable surface energy balance (Kurylyk & Hay-
ashi, 2016). Extensions include distributed applications (e.g., Kolyma basin runoff modeling; Kuchment
et al., 2000), two-directional solutions that better handle FT cycles (Woo et al., 2004), and analytical or semi-
analytical uses for parameter inference and sensitivity (G. Hu et al., 2016; J. B. Li et al., 2021; Semenova
et al., 2014; Sun et al., 2020). These approaches improve realism but still struggle when advective heat transport
and phase-dependent hydraulics dominate.
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Modified Stefan formulations now incorporate sensible heat storage and phase-dependent hydraulic properties,
yielding better agreement with observed thaw depths (G. Hu et al., 2016). Enthalpy-based (e.g., apparent heat-
capacity) methods are increasingly standard in land surface models such as CLM and Noah, allowing gradual
phase change representation while maintaining numerical stability (Hansson et al., 2004; Oleson et al., 2013;
Yokohata et al., 2020). These methods accommodate gradual phase change and unfrozen water but require careful
smoothing, calibration of phase functions, and (ideally) inclusion of advective heat due to liquid/vapor flow. In
practice, our recommendations are: (a) use classical Stefan solutions for screening, diagnostics, and controlled
cases; (b) use corrected/extended Stefan for basin-scale coupling when data are limited; and (c) use enthalpy-
based or fully coupled heat-and-mass models when Pe > 1, strong heterogeneity exists, or zero-curtain dy-
namics and moisture redistribution control energy closure. Systematic evaluation against multi-year ground
temperature, moisture, and flux observations remains essential to quantify uncertainty and guide model selection.

5.2.2. Models Describing Coupled Water and Heat Transfer in the Frozen Soil Column

Over the decades, the research community has developed a suite of process-based hydrologic models to represent
FT effects on infiltration, runoff, and subsurface flow (Table 2). Two main models describe coupled water and
heat transfer in frozen soil. The mechanistic model focuses on viscous liquid flow and heat balance in porous
media, often referencing the Philip-Vries model for simulating water and temperature redistribution (Bonacina
etal., 1973; Harlan, 1973; Motovilov, 1977). The thermodynamic model emphasizes equilibrium states and phase
changes, driven by temperature and water pressure gradients, using principles of irreversible thermodynamics
(Kay & Groenevelt, 1974; Spaans & Baker, 1996). However, the Clausius—Clapeyron relation is valid only near
0°C as continual water flow in freezing soils disrupts equilibrium, invalidating its use for moisture migration
(Peng et al., 2016). Contemporary implementations blend these views by coupling Richards-type flow with
energy conservation and temperature-dependent phase change, and by using soil-freezing characteristic curves to
relate ice content to temperature and matric potential, thereby representing capillarity, cryosuction, and perme-
ability loss across the freezing front.

Many early models extended classical soil physics to freezing conditions by incorporating the phase change of
water into Richards' equation and heat transfer equations. Several one-dimensional models simulate coupled
water and heat processes in freezing soil column, for example, SHAW model (Flerchinger & Saxton, 1989),
COUP model (Jansson, 2012), and HYDRUS-1D (Hansson et al., 2004). SHAW accounts for liquid, solid, and
gaseous water effects on hydrothermal transfer and adjusts freezing temperatures using water potential equations,
thus capturing how soil tension and ice content interact. COUP simulates water, heat, carbon, and nitrogen fluxes
in the soil-plant-atmosphere system, incorporating ice effects on water transfer (Jansson & Karlberg, 2004) and
uses automated calibration for parameter uncertainty (X. Wu et al., 2018). HYDRUS includes a freezing module
with hydraulic conductivity adjustments for blocking effects, and its formulation has been widely applied to
investigate freezing front advancement and thaw consolidation in soils (Zhao et al., 2016; C. Zheng et al., 2021).
Lastly, tracer-aided models integrate isotopic and geochemical tracers to separate snowmelt from rainfall and
validate flowpath partitioning in partially frozen catchments (A. Smith et al., 2019). Recent intercomparisons (Bui
et al., 2020; Grenier et al., 2018) highlight systematic differences between simulators, emphasizing the need for
benchmarking against field data sets (Nicolsky et al., 2007).

5.2.3. Modeling the Frozen Soil Hydrologic Cycle at a Large Scale

Scaling from point-scale process models to basin or regional predictions requires representing lateral flow,
groundwater exchange, heterogeneous FT states, and tight feedbacks with the surface energy balance (Aas
et al., 2019; King et al., 2020). Intercomparisons of thermo-hydrologic codes (e.g., SUTRA, COMSOL, ATS)
show broadly similar patterns but may display systematic divergences arising from discretization choices,
freezing curves, and governing-equation closures (Grenier et al., 2018). Many simulators still rely on external 1-D
surface schemes (e.g., SHAW) or assume saturated conditions (e.g., SMOKER); fully integrated models (e.g.,
ATS) are computationally demanding, whereas others simplify soil freezing (e.g., HydroGeoSphere). Solute-
transport implementations (e.g., IHTSM; L. Zhang et al., 2021) often omit explicit FT kinetics and cryo-
chemistry, limiting realism for contaminant mobilization and carbon—permafrost-thaw feedbacks (Langer
et al., 2023). The bottlenecks are scale-aware parameterizations of cryosuction, macropore/preferential flow, and
hysteretic hydraulic properties, plus rigorous benchmarking against analytical cases and field data for nonlinear,
path-dependent systems.
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Representing soil structural change is equally limiting. Cryoturbation reorganizes pores, transports fines, and
nucleates ice lenses that control hydraulic connectivity. Hydro-thermo-mechanical formulations link void ratio,
stress—deformation, saturation, and lens growth while identifying thermally driven cryosuction as the dominant
driver of water migration to the freezing front (Huang & Rudolph, 2021; Lai et al., 2014). These advances un-
derscore a prerequisite for credible active-layer dynamics: accurate surface-energy partitioning and temperature
gradients, which in turn demand realistic albedo, aerodynamic roughness, and temperature-dependent thermal
properties of partially frozen media.

Land-surface and semi-distributed hydrological models remain powerful tools for simulating cold regions pro-
cesses at large scales. Snowmelt modules Variable Infiltration Capacity (VIC) and Soil and Water Assessment
Tool (SWAT) (Arnold et al., 1998; Liang et al., 1994) have been refined, with independent ice/snow algorithms
recommended for SWAT-class models (Q. Li et al., 2021), while CRHM and ECOMAG embed more explicit FT
physics for cold basins (A. Gelfan et al., 2017; Pomeroy et al., 2007). Climate-oriented land surface models
(LSMs; e.g., CLM, Noah, VIC) now include permafrost hydrology (Lawrence & Slater, 2008; Niu & Yang, 2006;
Oleson et al., 2013), yet coupling of vapor fluxes and unfrozen water remains incomplete. New intercomparisons
show that land-surface models in CMIP®6 still underperform in reproducing permafrost thermal dynamics, partly
due to simplified soil physics (Burke et al., 2020; G. Hu et al., 2023). Pragmatic adaptations often implement two-
layer representations, like the HBV model with an infiltration-limited active layer (Lindstrom et al., 2002) and
distributed runoff schemes with impermeable frozen layers (Kuchment et al., 2000). However, emerging tools are
helping to bridge scales: assimilating satellite FT states to better constrain soil temperature and runoff, using
artificial intelligence (AI) emulators to capture subgrid preferential flow, and applying tracer-aided models to
resolve water ages and mixing (Piovano et al., 2019; A. Smith et al., 2019).

Recent advances in remote-sensing—derived river discharge provide powerful constraints for cold-region hy-
drologic modeling and DA. For example, pan-Arctic discharge products based on satellite imagery and machine
learning (ML) reveal changes in freshwater export and freshet timing that can be assimilated to constrain
winter/baseflow contributions under thaw (Feng et al., 2021). Similarly, high-resolution analyses over High
Mountain Asia show accelerating discharge on a subset of rivers, implying evolving melt-runoff partitioning that
DA can capture in cryo-impacted basins (Flores et al., 2025). In practice, integrating these data via ensemble-
based or variational DA with cold-region land/hydrologic models should improve representation of
FT-controlled permeability, taliks, and seasonality, especially when paired with microwave FT status and
groundwater indicators.

Meta-analyses emphasize a persistent divide between surface-focused models and fully coupled subsurface
thermo-hydrology (Bui et al., 2020; Grenier et al., 2018). A practical path forward is a tiered framework: (a) 3-D
process models for mechanism discovery and parameter priors; (b) intermediate-complexity, cryo-aware models
with transferable parameterizations for regional forecasting; and (c) continental LSMs with structural ensembles
and systematic benchmarking using remote sensing and isotope/tracer constraints. This hierarchy, coupled with
shared testbeds and intercomparisons, enables defensible basin-to-continental prediction under continued
warming.

5.2.4. Modeling Greenhouse Gas (CO,, CH,4, N,O) Emissions in the Frozen Soil

Permafrost-enabled land models (including CMIP6-class ESMs) now simulate high-latitude CO, and CH, release
from thawing soils. However, such models remain limited in reproducing present-day soil-carbon stocks, turnover,
and feedbacks, which propagates large uncertainty into projections (Natali et al., 2021; E. A. Schuur et al., 2022).
Most models stratify soil carbon by depth and parameterize decomposition as functions of temperature, moisture,
and oxygen; methane (CH,) submodules typically represent anoxic production, aerobic oxidation, and transport via
diffusion, ebullition, and plant aerenchyma. Despite model performance being highly sensitive to wetland extent,
many models still use static or satellite-derived masks, while only a minority predict wetlands prognostically from
water-table/topographic constraints (TOPMODEL-type). Additionally, emerging data-driven products (e.g.,
WAD2M) and ensembles (e.g., WetCHARTS) reveal large heterogeneities in seasonal cycles and climate sensi-
tivities (Bloom et al., 2017; Gedney et al., 2004; Saunois et al., 2020; X. Y. Zhang et al., 2021). Critically, most
frameworks under-represent abrupt thaw features (thermokarst lakes, collapse-scar bogs) that rapidly expand
saturated area and amplify CH, release (Turetsky et al., 2020; Walter Anthony et al., 2018). Representation of N,O
is even more rudimentary: many models apply generic nitrification/denitrification parameterizations and miss FT
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pulses and thermokarst “hot spots” despite syntheses showing substantial fluxes from permafrost-affected soils
(Voigt et al., 2020).

FT cycles reorganize moisture and redox, driving episodic N,O bursts (Voigt et al., 2020) that are poorly captured
when models rely on smooth temperature scalars. Accurate prediction requires observations that resolve snow—
soil thermal regimes and gas transport, since diffusivity through snow/ice modulates efflux and wind pumping
can drive non-Fickian exchange in amounts that exceeds Fickian diffusion (Seok et al., 2009). For example, the
release of physically trapped N,O during melt explains observed winter spikes but contributes little to annual
fluxes (Risk et al., 2014). Additionally, frozen matrices suppress O, diffusion and nitrification/denitrification
(Teepe et al., 2001), whereas FT pulses transiently stimulate N,O (X. Li et al., 2021; Wolf et al., 2010); model
performance improves, however, when moisture/structure predictors are used (Congreves et al., 2018). Linear
temperature-response schemes underestimate FT-driven N,O in croplands by ~17%-28% and overestimate
colder grasslands (Del Grosso et al., 2022; Wolf et al., 2010). Widely used models (DayCent, DNDC) still lack
predictive algorithms using explicit FT microphysics and/or rely heavily on soil-temperature parameterizations,
whereas adding frozen-soil heat transfer improves winter soil temperature predictions and N,O simulations (Del
Grosso et al., 2022).

Deeply coupling GHG modules with hydrology is essential to narrow uncertainty in permafrost feedbacks.
Linking land-surface/climate models to subsurface heat and groundwater flow (i.e., capturing conductive and
advective heat transport) improves soil thermal realism, the space-time placement of CO,/CH, fluxes, and
prediction of hydrologic convergence zones (valley bottoms, connected wetlands) that thaw earlier and emerge as
methane hot spots (Walvoord & Kurylyk, 2016). Community intercomparisons show fully coupled, multiphase
simulators resolve phase change and heat—mass transfer better than simpler schemes, though at higher compu-
tational costs (Grenier et al., 2018), and that surveys better confirm gaps between surface-oriented and
subsurface-oriented models (Bui et al., 2020). Multi-model assessments indicate higher levels of confidence in
CO, projections (largely scales with thawed-carbon amount) than in CH, and N,O emissions, where uncertainty
hinges on hydrology, dynamic wetland formation, and under-represented FT microphysics (Del Grosso
et al., 2022; Natali et al., 2021). Priorities include parameterizations for abrupt thaw and wildfire effects,
groundwater-mediated heat transport, and emergent wetlands. The parameterizations should be supported by
coordinated observation—-model integration to evaluate model performance and communicate risks.

5.3. Parameterizations Schemes for Frozen Soils

Parameterization schemes are utilized to mathematically represent the physical and chemical processes that occur
within frozen soils. Their purpose is to provide the values of model parameters or simplified formulations that
capture the essence of complex processes (like phase change, flow impedance, etc.) without resolving them in full
detail. It is crucial to utilize suitable parameterization schemes, as omitting or mis-specifying parameters can
result in larger errors and uncertainty in simulating soil temperature and moisture (W. Hu et al., 2025; Pitman
et al., 1999). Poor or missing frozen-ground parameterizations can amplify soil temperature biases and
misrepresent the effects of winter on soil cooling (Viterbo et al., 1999). In light of these findings, past param-
eterizations for key processes in frozen soils have been summarized (Figure 10).

5.3.1. Freeze-Thaw Parameterization Schemes

FT parameterization generally falls into three families (Q. Yang et al., 2018): (a) binary threshold approaches that
switch soil water to ice when temperature falls below 0°C; (b) empirical unfrozen water relations that link
temperature to matric potential via power law fits; and (c) physically motivated freezing point depression for-
mulations, widely implemented in SHAW, Noah, and CLM. While complexity rises across these families, so do
data and computational demands; the simple scheme is robust but can misrepresent partial freezing, whereas
empirical curves improve realism yet suffer from limited transferability across textures and salinity regimes (W.
Huet al., 2025). Recent updates incorporate supercooled liquid water, hysteresis, and phase change enthalpy (Lan
et al., 2015) that improves the accuracy of soil temperature and moisture simulations. Persistent challenges
include parameter identifiability, reconciling point scale calibration with landscape heterogeneity, and repro-
ducing diurnal/late winter ground temperature variations that control infiltration and runoff. Progress will likely
come from hybrid schemes and data assimilation that constrain parameters with multi sensor observations.
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Figure 10. Summary of key parameterization schemes for frozen soil processes in models.

5.3.2. Phase Change

Phase change is represented by coupling latent heat to a soil specific freezing curve that partitions phases and
controls apparent heat capacity and hydraulic impedance. Two implementations are used: (a) an apparent heat
capacity/enthalpy scheme that spreads latent heat over a small temperature range; and (b) an explicit latent heat
source with prognostic ice content that is solved when fully coupled with Richards flow equation and/or operator
splitting. For rapid freezing, supercooling, or ice lens growth, a non-equilibrium relaxation of the freezing curve
allows departures from thermodynamic equilibrium. All terms are energy-mass consistent and reconcile with
vapor condensation and deposition, avoiding double counting. The apparent heat capacity method neglects un-
frozen water (Sun et al., 2020), whereas the enthalpy method simplifies phase change but poorly separates liquid
and ice in partially frozen soils, often assuming constant unfrozen water (Bao et al., 2016).

5.3.3. Hydraulic Conductivity

Hydraulic conductivity in frozen soils declines as ice occludes pores, altering size, tortuosity, and connectivity
(L. Zhang et al., 2021). A practical parameterization treats effective conductivity as the product of a temperature-
dependent saturated term (reflecting viscosity), a relative-permeability term linked to unfrozen water saturation
from the soil-freezing/retention curve, and an ice-impedance factor that reduces flow via power-law or exponential
functions of ice content (e.g., Zhao et al., 2013). Anisotropy and time-evolving saturated conductivity can represent
lensing, FT damage, and hysteresis. Where macropore pathways matter during melt, a dual-domain blend of
macropore and matrix conductivities is applied. Existing approaches span semi-theoretical capillary/sorptive
formulations, empirical temperature relations, and water-content-based rules, but performance degrades at low
temperature and high ice content (Watanabe & Wake, 2009). Recent schemes, modified van Genuchten formu-
lations, and dual-porosity models, improve fits yet require validation across soils and temperatures (Nicolsky
et al., 2007; Y. Zhang et al., 2008; L. Zhang et al., 2021).

5.3.4. Thermal Conductivity

Soil thermal conductivity is best represented as an effective property governed by the liquid-, ice-, and air-filled
pore fractions, texture/mineralogy, bulk density/porosity, and organic content. Mixing-model approaches are
widely used (e.g., Johansen/de Vries with Kersten-type saturation factors) and separate parameterizations for
frozen versus unfrozen states. Latent-heat effects are handled via an enthalpy/apparent-heat-capacity scheme with
anarrow smoothing near 0°C to align with unfrozen-water curves and avoid double counting. Optional anisotropy
captures layering and ice lenses, and snow—soil thermal contact is treated consistently. Model formulations span
theoretical/mathematical and empirical families, and hybrid schemes combine physical theory with accessible
soil data (Abu-Hamdeh & Reeder, 2000; Dong et al., 2015; Zhao et al., 2021). A key challenge is the strong
nonlinearity around freezing: small ice fractions sharply raise conductivity through particle-bridging, whereas
further freezing yields diminishing returns. Many land models still rely on lookup tables or simple liquid/ice
functions, underscoring the need for continued laboratory validation under FT conditions.
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5.3.5. Freezing Curve

The soil freezing characteristic curve (SFCC) is typically parameterized by linking temperature to suction through
the generalized Clausius—Clapeyron relation, combined with soil water characteristic curves (SWCC). When
direct observations are limited, monotonic empirical functions constrained by TDR, NMR, or gamma attenuation
are applied, with separate freezing and thawing branches to capture hysteresis. The temperature sensitivity of ice
content provides the latent heat term in apparent heat capacity or enthalpy formulations and informs unsaturated
hydraulic conductivity; consistency with ice-impedance multipliers must be maintained. Water and heat move-
ment in partially frozen soils further depends on hydraulic and thermal conductivities together with SWCC and
SFCC, both of which show hysteresis. Early formulations (Harlan, 1973) often overestimated fluxes, but later
models such as SHAW, HYDRUS, and COUP incorporate impedance factors to reduce bias (Hansson
et al., 2004; Jansson & Karlberg, 2004). Recent advances extend SFCCs to saline soils and incorporate solute
exclusion, improving applicability under climate change (Amankwah et al., 2021; Bi et al., 2023; Devoie
et al., 2022; Y. Zhou et al., 2019).

5.3.6. Frozen Soil Infiltration

Accurate parameterization of infiltration during freezing and thawing is critical for simulating runoff generation
in cold regions (Appels et al., 2018; Quinton & Marsh, 1999). Common schemes include (a) reducing hydraulic
conductivity with increasing ice content (“impedance factors”), (b) assigning a frozen-impermeable surface
fraction, (c) disabling infiltration beyond a critical ice threshold, and (d) dual-domain formulations that permit
macropore bypass during snowmelt (R. Jiang et al., 2024). Some models also couple infiltration capacity to the
depth and migration of the FT front. Process performance depends on soil texture, antecedent moisture, cry-
ostructure, and melt intensity as thin, discontinuous ice can admit limited percolation, whereas connected lenses
force Hortonian overland flow (Z. He et al., 2023; Sanchez-Rodriguez et al., 2025). Because freezing and thawing
exhibit hysteresis and strong subgrid variability, robust schemes tile the landscape or apply probabilistic frozen-
area approaches and calibrate jointly to soil temperature—moisture profiles and event hydrographs. Where frozen
layers host cracks or biopores, enabling preferential bypass is essential to reproduce early-season freshet peaks
without inflating late-season runoff.

5.3.7. Vapor Movement

In frozen soils, vapor transport becomes the dominant pathway because liquid flow is impeded. Two mechanisms,
isothermal and thermal vapor diffusion, are represented with an effective diffusivity scaled by air-filled porosity
and tortuosity, with optional enhancement for non-ideal transport. Condensation or deposition near freezing
fronts is coupled through latent heat, while maintaining energy—mass consistency (unfrozen water curve, apparent
heat capacity), shaping temperature profiles and the timing of infiltration—runoff partitioning under winter
conditions and at the snow—soil interface. During freezing, unfrozen water migrates toward the freezing front
under reduced water-pressure gradients, producing sensible and latent heat transfer. Once fully frozen, vapor
dominates in the shallow vadose zone at low water potentials (C. Zheng et al., 2020). Recent studies including
liquid, vapor, and air fluxes show minimal liquid—vapor advection, but ice—air interactions can alter advection,
and direct vapor measurements remain difficult. Therefore, Fickian estimates based on vapor density are often
applied (Yu et al., 2018).

5.3.8. Freeze-Thaw Fronts

FT fronts are commonly represented by three strategies: Stefan-type degree-day schemes, apparent heat-capacity
formulations that distribute latent heat over a narrow temperature interval, and explicit front tracking with inter-
facial mass/energy balance. These choices govern the timing and depth of infiltration shutdown, cryosuction, and
latent-heat buffering at advancing/receding fronts (Z. Xie et al., 2018). Parameterizations of soil layering/strati-
fication strongly modulate water-table fluctuations and surface evaporation (Koirala et al., 2014). Diagnostic
approaches that infer front position from soil-temperature profiles are practical but prone to numerical oscillations.
Semi-empirical options, such as the Stefan model (Woo et al., 2004), FT index model (Nelson & Outcalt, 1987), and
Kudryavtsev model (Nan et al., 2012), all provide parsimony, yet the first two omit non-conductive heat transfer
and soil-moisture variability, whereas the Kudryavtsev formulation, though more comprehensive, yields larger
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uncertainty in active-layer thickness. These trade-offs motivate hybrid, data-constrained schemes that couple
physically based heat-water-vapor transport with computationally efficient front metrics.

6. Future Research Directions

Frozen soil hydrological processes critically influence water and energy cycles in cold regions, shaping how
climate change impacts manifest and contribute to large-scale feedbacks. While current models and observations
have advanced our understanding, several important directions remain for future research.

6.1. Data Scarcity and Networks

Urgent expansion of integrated frozen-soil monitoring is needed across cold regions, where vast areas, especially
the Russian and Canadian Arctic and alpine zones of Asia and South America, lack observations of soil tem-
perature, moisture, active-layer dynamics, and winter processes (Harris et al., 2009). Strengthening programs
(e.g., GTN-P and an emerging Global Seasonal Frost Zone network) and open synthesis of ALT and under-snow
moisture would provide validation targets and reveal accelerating ground-ice loss. Because no single method fully
captures both liquid water and ice content, combined approaches (e.g., TDR with cosmic-ray neutron probes, DTS
with UAV-based sensing) should be prioritized (Z. C. Tian et al., 2020). Remote-sensing accuracy varies with
soil, vegetation, and elevation, so ground networks must be integrated with satellites. ML-assisted data fusion
shows promise in integrating heterogeneous data sets, from isotopes to geophysical imaging, to fill observational
gaps (Baghbani et al., 2022).

6.2. Scaling and Integration

Bridging scales remains a core challenge, from pore-scale physics to catchment hydrology and global climate
(Rodenhizer et al., 2023). Progress hinges on upscaling ice-lens formation, preferential flow, and heterogeneous
thaw via better sub-grid parameterizations and nested frameworks. Although models now couple soil thermal,
hydrologic, and atmospheric processes, scaling and data-assimilation hurdles persist (Bao et al., 2016; van Tiel
et al., 2024). More integrated observations, such as combining flux towers, deep soil/permafrost measurements,
and remote sensing, are needed to help constrain scale transitions (Virkkala et al., 2021). There also continues to
be uncertainty in parameterizing frozen soil models due to spatial heterogeneity (Ireson et al., 2013). While
calibration (GLUE, Bayesian, Monte Carlo) and Al optimization can reduce the uncertainty, there is still a need
for stronger validation and higher quality inputs (Duan et al., 2007; Gupta et al., 2023; M. Wu et al., 2019). Nested
approaches show promise (Z. He et al., 2023), but simulation of water, heat, and macropore dynamics requires
theory and rigorous validation (Kurylyk & Watanabe, 2013; Mohammed, Cey, Hayashi, Callaghan, et al., 2021).
Additionally, many models omit non-conductive heat and vapor fluxes (G. Hu et al., 2023) despite its importance
in accurately predicting thaw. To aid in resolve scaling and uncertainty issues, multi-physics frameworks that
integrate remote sensing and field observations are needed to improve projections of permafrost thaw and hy-
drologic responses to climate warming (e.g., tele-connected effects) (Tang et al., 2023).

6.3. Permafrost-Carbon-Hydrology Feedbacks

Coupling water and carbon under permafrost thaw requires integrated research across geomorphology, hydrol-
ogy, and biogeochemistry. Predicting where thermokarst lakes develop and persist is essential because they
reshape the local hydrology and act as hotspots for CH, emissions. Thaw-induced pulses of nitrogen and
phosphorus can drive eutrophication and/or nutrient uptake depending on hydrological flow paths (Walvoord &
Striegl, 2007), while “ghost nutrients” such as legacy nitrate or mercury may be remobilized as drainage networks
reorganize under warming. Uneven thaw produces wet-dry mosaics in which frozen uplands collapse into wet-
lands, expanding surface water, lowering albedo, and altering evapotranspiration and carbon uptake (Helbig
et al., 2020). FT cycles regulate root mortality and soil fauna (Sorensen et al., 2018), yet winter bio-hydrological
mechanisms remain poorly resolved. Vegetation shifts feed back on soil thermal regimes, further complicating
prediction of carbon fluxes. Abrupt thaw rapidly transforms energy balance and carbon cycling, underscoring the
need for field campaigns and process-rich models to forecast sink-source transitions (Teufel et al., 2019) and to
improve Earth system simulations (Schidel et al., 2024; Seneviratne et al., 2010). The magnitude and timing of
permafrost carbon release remain highly uncertain (M. C. Jones et al., 2023). Current models largely assume
gradual thaw, ignoring abrupt events like collapse or wildfire that rapidly expose deep carbon (Chen et al., 2021;
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Natali et al., 2021). Overshooting temperature targets can double or quadruple emissions, yet most Earth system
models underestimate these feedbacks (Bui et al., 2020; Walvoord & Kurylyk, 2016). Explicit inclusion of abrupt
thaw, supported by field data and remote sensing, is essential to improve predictions and inform climate policy.

6.4. Groundwater and Deep Processes

Most research and monitoring target the active layer and near-surface permafrost, yet thinning permafrost acti-
vates deeper groundwater systems with hydrological, biogeochemical, and ecological implications. Despite
groundwater being identified as a catalyst for change in the Arctic (T. McKenzie et al., 2021), there is a paucity of
direct groundwater observations in permafrost settings. Hydrogeological surveys and deep borehole networks
logging temperature and aquifer pressures are needed to clarify permafrost-groundwater coupling and validate
numerical models. Sparse observations mean large-scale models oversimplify dynamics, motivating multi-
dimensional schemes that simulate groundwater flow in thawing permafrost (Devoie et al., 2019). A key gap
is linking LSMs and surface hydrologic models with cryo-hydrogeologic models at watershed or regional scales
in computationally efficient ways (Dai et al., 2019; Painter et al., 2023). Improved modeling tools need to be
combined with integrated groundwater-surface water monitoring to resolve the complexities of evolving sub-
surface hydrologic connectivity as permafrost thaws. Beyond understanding the effects of permafrost on the
physical hydrogeologic system, there remains an urgent need to resolve issues related to solute transport in frozen
soils and associated cryo-hydrogeologic feedbacks. More research is needed in the area to support groundwater
resource development and protection (Somers & McKenzie, 2020).

6.5. Climate Change and Water Resources Implications

Climate warming brings extremes, including rain-on-snow, sudden thaws, and heavy-snow years, which reshape
frozen-soil processes. For example, mid-winter melt builds soil-ice layers that alter hydrology and the spring
freshet. Rapid warming advances snowmelt and shrinks snowpack, altering seasonal water resources (Pulliainen
et al., 2017). Recent studies show that warming-driven shifts in runoff seasonality already affect Arctic com-
munity water supplies and emphasize adaptation needs (Koch et al., 2024). Thaw-subsidence expands wetlands
and shifts streamflow and storage (Korosi et al., 2017). While baseflow is increasing in many Arctic rivers due to
permafrost thaw (S. G. Evans et al., 2020), the long-term cumulative effects of climate change (i.e., altered
precipitation patterns, increasing wildfire) on streamflow are poorly understood. Complex recharge-evaporation
interactions require models coupling cryo-hydrogeology with climate projections (Kurylyk et al., 2014). Research
priorities include testing whether anomalous warming events trigger irreversible talik development, quantifying
wildfire-driven permafrost degradation, and evaluating groundwater dynamics in thaw-activated aquifers (T.
McKenzie et al., 2021). Active-layer thickening may buffer streamflow variability, but validation is limited
(Kurylyk et al., 2014; Walvoord & Kurylyk, 2016). Retreating glaciers briefly add freshwater but raise sea levels
and erode coasts, underscoring needs for long-term monitoring, advanced models, and better understanding of
solutes, nutrients, and hydro-ecological feedbacks.

6.6. Emerging Technologies

Embracing emerging technologies is critical for advancing frozen soil hydrology. Al and ML are increasingly
recognized as transformative tools, capable of extracting insights from the rapidly expanding volume of cold-
region environmental data. For example, Al can systematically analyze multi-decadal satellite imagery to detect
and quantify thermokarst lake dynamics or the timing of FT transitions (Hughes-Allen et al., 2023), tasks that
would be prohibitively labor-intensive using traditional methods. ML techniques also offer value as emulators of
computationally intensive model components. A trained neural network, for instance, could approximate the
behavior of a high-resolution permafrost model, enabling its integration into global simulations at far lower
computational cost. Early studies already demonstrate Al's potential in related domains. For example, Baghbani
etal. (2022) reviewed Al applications in geotechnical engineering, including permafrost stability. Looking ahead,
data-driven models could fill observational gaps by transferring knowledge from well-instrumented sites to
unmonitored regions, while Al-based optimization can streamline parameter calibration by assimilating diverse
inputs (e.g., soil, snow, vegetation, climate) more efficiently than traditional brute-force methods. Coupling Al
with physics-based models offers a powerful path toward next-generation Earth system predictions.
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6.7. Interdisciplinary Integration

Future research in cold regions should integrate social and engineering dimensions, advancing socio-hydrological
studies that combine physical science, risk assessment, and adaptation. Human activities accelerate permafrost
thaw, intensify emissions and ecosystem degradation, and disrupt water regulation, biodiversity, and carbon
storage (J. P. Liu et al., 2020; Kreyling et al., 2021). Practical questions for infrastructure and resource devel-
opment demand cross-sector collaboration. For example, how northern water supplies should adapt if winter
flows rise with thaw events (Hjort et al., 2018). Integrated frameworks are emerging, where modelers and
permafrost scientists embed FT processes and carbon feedback in Earth-system models (Hugelius et al., 2020; Y.
Wang et al., 2014), while ecohydrology collaborations probe vegetation-microbe shifts in hydrologic cycles
(Bosson et al., 2023). Field studies of roots, phenology, and groundwater interactions will inform models and
anticipate shifts from carbon sinks to sources (Teufel et al., 2019). Recent reviews emphasize the importance of
indigenous knowledge in Arctic hydrology, highlighting that co-production of knowledge generally improves
both scientific models and community adaptation strategies (McCarty et al., 2021). Effective adaptation requires
engineers, social scientists, policymakers, and indigenous communities to work together.

7. Conclusion and Synthesis

This review synthesizes recent advances and enduring challenges in frozen-soil hydrology. Frozen-soil processes
fundamentally reshape cold-region water cycles and often exhibit threshold behaviors and feedbacks ongoing
climate warming is already perturbing these dynamics with observable impacts on hydrology, ecosystems, and
infrastructure. Despite progress in parameterizing FT cycles, thermal conductivity, and hydraulic properties,
major uncertainties persist in representing non-conductive heat transfer and soil-water movement across flow
regimes, and most models still under-represent salinity, organic matter, vegetation type, and root dynamics.
Modeling and observational capacities have improved, yet key gaps remain in data coverage, scaling, and process
understanding. Competing hypotheses, such as the magnitude of permafrost-carbon feedback and whether
vegetation change stabilizes or destabilizes permafrost, require rigorous testing. Bridging micro-scale processes
(e.g., cryosuction, macropore flow, talik formation) with watershed and Earth-system models is urgent. Priorities
include multi-scale modeling frameworks that integrate detailed field studies with large-scale representations,
comprehensive databases of permafrost properties, and enhanced monitoring networks (geophysics, remote
sensing, community observations). Addressing these gaps will demand sustained, interdisciplinary, international
collaboration over the coming decade to reduce uncertainty and inform adaptive management in cold regions.
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