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A R T I C L E  I N F O

Keywords:
AmeriFlux network
Eddy covariance
Site uniqueness
Site clustering

A B S T R A C T

Environmental observation networks, such as AmeriFlux, are foundational for monitoring ecosystem response to 
climate change, management practices, and natural disturbances; however, their effectiveness depends on their 
representativeness for the regions or continents. We proposed an empirical, time series approach to quantify the 
similarity of ecosystem fluxes across AmeriFlux sites. We extracted the diel and seasonal characteristics (i.e., 
amplitudes, phases) from carbon dioxide, water vapor, energy, and momentum fluxes, which reflect the effects of 
climate, plant phenology, and ecophysiology on the observations, and explored the potential aggregations of 
AmeriFlux sites through hierarchical clustering. While net radiation and temperature showed latitudinal clus
tering as expected, flux variables revealed a more uneven clustering with many small (number of sites < 5), 
unique groups and a few large (> 100) to intermediate (15–70) groups, highlighting the significant ecological 
regulations of ecosystem fluxes. Many identified unique groups were from under-sampled ecoregions and biome 
types of the International Geosphere-Biosphere Programme (IGBP), with distinct flux dynamics compared to the 
rest of the network. At the finer spatial scale, local topography, disturbance, management, edaphic, and hy
drological regimes further enlarge the difference in flux dynamics within the groups. Nonetheless, our clustering 
approach is a data-driven method to interpret the AmeriFlux network, informing future cross-site syntheses, 
upscaling, and model-data benchmarking research. Finally, we highlighted the unique and underrepresented 
sites in the AmeriFlux network, which were found mainly in Hawaii and Latin America, mountains, and at under- 
sampled IGBP types (e.g., urban, open water), motivating the incorporation of new/unregistered sites from these 
groups.

1. Introduction

Environmental observation networks, such as the eddy-covariance 
flux measurement networks, are foundational for monitoring Earth’s 
response to climate change, management, and natural disturbance 
(Baldocchi et al., 2001; Jones et al., 2021; Loescher et al., 2022; Novick 
et al., 2018). These networks are often built in a so-called "bottom-up" 
fashion, where individual investigators establish research sites based 
primarily on discrete research objectives, and then later, the sites are 
combined into cooperative observation networks, such as AmeriFlux 

(Baldocchi et al., 2024; Novick et al., 2018), MexFlux (Tarin-Terrazas 
et al., 2020; Vargas et al., 2013), and FLUXNET (Baldocchi, Falge, Gu, 
et al., 2001). These collaborative bottom-up networks can have various 
coverage and biased representations for different ecoregions and biome 
types within the networks (Pallandt et al., 2022; Villarreal et al., 2019). 
While the representativeness of sites is often not an issue for in
vestigators doing research at individual sites, regional, continental, and 
global evaluations rely on available sites’ data and are sensitive to bias 
in site locations. The assessments of existing observation networks also 
guided new site locations and future experimental designs (Malone 
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et al., 2022; Pallandt et al., 2022; Papale et al., 2015; Sulkava et al., 
2011). For example, a recent study suggested that redistributing sites 
could improve network representativeness from ~30–40 % to ~80–85 
% across Latin America by adding additional optimally distributed sites 
across the undersampled environmental space (Villarreal and Vargas, 
2021). In another undersampled environment, largely bottom-up 
emerging efforts are increasingly siting flux towers in urban locations 
(e.g., Davis et al., 2017) to study human activity. Often, these bottom-up 
networks consisted of groups of sites co-located within the same ecor
egions across gradients of land cover/land use, plant functional types, 
management (e.g., forestry, agriculture), disturbances (e.g., wildfire), 
elevation, edaphic or hydrologic regimes (Chu et al., 2023; Stoy et al., 
2023).

Advancing our understanding of the Earth’s surface beyond the 
footprint of individual tower sites requires observational sites and their 
formed network to adequately represent the target domains (e.g., re
gions, continents, and terrestrial globe). Ecoregions have been proposed 
as a framework to design environmental observation networks where 
the Earth’s surface is delineated into smaller, quantifiable, self-similar, 
and non-overlapping units based on biophysical properties (e.g., 
climate, soil, geology, potential vegetation type, possible land use) 
(Koenig, 1999; Omernik, 2004). Representative observation sites were 
then determined and established for each ecoregion. Similarly, the In
ternational Geosphere-Biosphere Programme (IGBP) was a global co
ordination effort to classify the Earth’s land-surface into standard 
ecosystem types, helping to foster global- to regional-scale science 
through scaling individual sites (Loveland et al., 1999). This top-down 
approach was adopted for the National Ecological Observatory 
Network (NEON) and the Long-Term Agroecosystem Research (LTAR) 
network, enabling research efforts and investments to be distributed in a 
cost-, labor-, and time-efficient fashion (Bean et al., 2021; Jones et al., 
2021). Ultimately, the strength of an observation network lies in both 
the individual sites, to address site-level questions, and in the repre
sentatives of the distribution of sites, in order to address larger-scale 
science.

Many attempts have been made to evaluate the networks’ repre
sentativeness, often based on potential driver variables of fluxes (e.g., 
climate, soil, and plant functional type) (Hargrove and Hoffman, 2004; 
Hargrove et al., 2003; Sulkava et al., 2011; Sundareshwar et al., 2007; 
Villarreal et al., 2018). These studies assumed certain functional simi
larities that a site could represent the flux behaviors at other unmea
sured areas if they shared similar function types—an assumption also 
adopted by most upscaling research (Jung et al., 2020; Xiao et al., 2010; 
Zheng et al., 2020). With this assumption, flux measurements at sparse 
locations can be extrapolated to regions, continents, and the globe by 
controlling for patterns in ecosystem structure and climate sensitivities. 
However, while ecoregions are often classified as discrete entities, the 
boundaries may be gradual, such as the gradient from forest to savanna 
to grassland, and may shift over time. Additionally, some ecoregions 
may be inherently heterogeneous (Kumar et al., 2023), making it 
incorrect to assume that all locations within an ecoregion will exhibit 
the overall (mean) properties of the whole, a phenomenon known as the 
ecological fallacy problem (Openshaw, 1984). While seemingly 
straightforward, determining how a single site represents a larger region 
often requires assumptions or simplifications, thus adding consider
ations when scaling.

With rich time series data (>107 h) collected at hundreds of Amer
iFlux sites, temporal information can be utilized to quantify site simi
larities and directly test assumptions of representativeness. Different 
approaches have been proposed to harness the temporal information of 
the flux dynamics (Baldocchi, Falge, and Wilson, 2001; Falge, Tenhu
nen, et al., 2002; Hill et al., 2024; Mahecha et al., 2007; Stoy et al., 2009; 
Wilson et al., 2003). An emerging trend in the literature is that measured 
fluxes at distinct locations can exhibit common behavior across time and 
space, suggesting that a site can be representative of spatially proximal 
locations to some degree (Hollinger et al., 2004; Poe et al., 2020; Post 

et al., 2015). A significant fraction of this temporal coherence occurs at 
the diel and seasonal scales, highlighting the influence of climatology, 
seasonality, and phenology on ecosystem fluxes (Stoy et al., 2009). With 
ecosystem fluxes strongly connected to environmental conditions, 
studies have shown that the functional behavior of ecosystem fluxes can 
be independent of vegetation type and climatic region, with an example 
of high-latitude ecosystems might behave similarly to tropical ecosys
tems under similar environmental conditions (Krich et al., 2021), and 
that spatial coherence can be on the order of 400 km based on the 
model-data assessment (Hilton et al., 2013). Across the upper Mid
western U.S., Poe et al. (2020) demonstrated that a cluster of sites from 
multiple ecosystem types has high temporal and spatial coherence, 
implying that flux information can be scalable among sites and across 
landscapes (Reed et al., 2021). Although there is currently a large 
amount of data available, relatively little work has been done on 
quantifying how similar (or dissimilar) data from sites are to each other 
at a network scale, and it is largely assumed that sites within ecoregions 
are similar and data from across ecoregions are dissimilar.

Here, we propose a novel approach to quantitatively examine flux 
sites’ similarity of measured ecosystem fluxes by extracting key time 
series characteristics—diel and seasonal dynamics. Harmonic analyses 
will be performed on the extracted time series features to explore their 
similarity and potential grouping among sites using hierarchical clus
tering. We will compare the clustering results along climatological 
gradients and across commonly adopted ecosystem classi
fications—ecoregions and IGBP vegatation types—to assess the degree 
of uniqueness of these clusters. This study addresses the following 
questions: 1) Do sites from the same ecoregion or IGBP types share 
similar time series characteristics? Here, we hypothesize that sites 
within the same ecoregion (or IGBP type) have higher similarity than 
sites across groups. 2) Is the similarity of time series characteristics 
among sites a function of spatial distance? We expect the extent of time 
series similarity to be distance-limited. 3) Within the AmeriFlux, which 
sites, ecoregions, or IGBP types show distinct time series characteristics, 
or are currently under-represented? Here, we expect ecoregions in Latin 
America and high latitudes to be relatively poorly represented. Solutions 
to these questions help disseminate the representativeness of existing 
sites, identify underrepresented locations, allow for model-data bench
marking of site selections, and thus establish a framework for using 
existing site locations for cross-site examinations that can help interpret 
patterns in the response of ecosystems to climate change, disturbance 
events, and anthropogenic management.

2. Methods and materials

2.1. Flux observations and composite time series

Land-atmosphere exchange (i.e., flux) observations are made using 
the eddy-covariance methodology (Baldocchi et al., 1988). A coalition of 
researchers measure carbon, water, energy, and momentum fluxes in 
ecosystems across the Americas and share these data via AmeriFlux to 
facilitate large-scale meta-analysis (Novick et al., 2018). Flux and sup
porting environmental data were retrieved from the AmeriFlux BASE 
data product (accessed September 2023) (Chu et al., 2023). Starting 
with all sites with data available, we first down-selected sites based on 
the data records (i.e., ≥ 3 years, allowing for robust extraction of time 
series features) and availability of the core flux variables of the eddy 
covariance methodology, including net ecosystem exchange (NEE) of 
carbon dioxide (CO2), sensible heat flux (H), latent heat flux (LE), and 
friction velocity (USTAR, i.e., a measure of momentum flux). The study 
included 343 sites with at least one flux variable available, with 191 
sites having at least 6 years of data. While focusing on the flux variables, 
we also included in the analyses the main environmental variables used 
to explain fluxes, including net radiation (NETRAD), air temperature 
(TA), vapor pressure deficit (VPD), and soil water content (SWC). 
NETRAD was used instead of photosynthetically active radiation (PAR) 
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or shortwave incoming radiation (SW_IN) since more sites report 
NETRAD (~88 %) compared to PAR (~77 %) or SW_IN (85 %). Our 
preliminary tests showed similar results using either of these three ra
diation variables. The top level of tower height for TA or VPD and of soil 
column depth for SWC are used for further analyses if a site has multi
level measurements. If not provided, VPD was calculated from TA and 
relative humidity (RH) (Monteith and Unsworth, 2008). No gap-filled 
data were used. While our analyses focused on directly measured ob
servations mentioned above, we conducted supplemental analyses using 
the derived ecosystem respiration (RECO) and gross primary production 
(GPP) for a subset of sites (186) with the available AmeriFlux-FLUXNET 
data product (accessed October 2024). This supplemental analysis 
aimed to explore the sensitivity of using NEE against GPP/RECO. Still, 
our study mainly focused on the large group sites (>300) with the core 
flux variables (i.e., NEE, LE, H, USTAR) (Table 1). All variables 
mentioned above were reported at a half-hourly or hourly resolution. 
For readers interested in details of the AmeriFlux BASE and FLUXNET 
data products, please refer to Chu et al. (2023) and Pastorello et al. 
(2020).

Ancillary data, including sites’ geolocations, IGBP land-cover types, 
and instrument heights, were retrieved from the AmeriFlux BADM 
(Biological, Ancillary, Disturbance, and Metadata) data product 
(AmeriFlux Management Project, 2020). The IGBP type was a 
remote-sensing-based land classification that mainly considered the 
current land cover/use, plant functional types, and phenology (Loveland 
et al., 1999), i.e., an atomistic classification. Level I Ecoregions gener
ated by the Commission for Environmental Cooperation were extracted 
based on the sites’ geolocations (Commission for Environmental Coop
eration, 1997; Griffith et al., 1998; Omernik, 2004). The ecoregion 
delineation was based on Omernik’s framework (Omernik, 1987), 
mainly considering the climate zones, land-surface forms, potential 
natural vegetation, and soil types, i.e., a holistic classification. The study 
sites span 16 IGBP types and 20 ecoregions (see Tables S1-S2 for a site 
list and data citation and Table S3 for a breakdown of IGBP and ecor
egion groups). Last, we used 30-year mean temperature and precipita
tion from Climatic Research Unit (CRU) data to represent each site’s 
long-term climatic condition (Harris et al., 2020).

All variables from the BASE data product were first filtered by their 
respective expected plausible ranges (e.g., − 50 ◦C–50 ◦C for air tem
perature). If NEE was absent, we calculated it from turbulent CO2 flux 
(FC) and storage flux (SC). Nighttime FC was first filtered using USTAR 
thresholds on a per-site basis, using the REddyProc library (Reichstein 
et al., 2005; Wutzler et al., 2018). If not provided, storage flux was 
assumed to be negligible at short-vegetation sites and calculated from 
single-level CO2 concentration at tall-vegetation sites (Papale et al., 
2006). No gap-filled data were used to extract information from the 
observation record unbiasedly (Vekuri et al., 2023). At this point, the 
data were treated as original time series from each site and ready for 

aggregation (Fig. 1a). For GPP and RECO, we used GPP_NT_VUT_REF 
and RECO_NT_VUT_REF variables from the AmeriFlux FLUXNET data 
product. NT, VUT, and REF refer to nighttime-based partitioning, vari
able USTAR threshold, and reference selected based on model efficiency 
(Pastorello et al., 2020). A brief summary of flux partitioning can be 
found in the Supplementary Text S1.

At each site, each variable was aggregated into a single annual 
composite time series. This time series consists of data from multiple 
years, consisting of diel-seasonal frequencies (Figs. 1b and S1), given 
that diel and seasonal scales contain the most temporal information of 
our target variables (Chu et al., 2023; Poe et al., 2020; Stoy et al., 2009). 
All AmeriFlux data were reported in local standard time, and southern 
hemisphere sites were not shifted temporally to match northern hemi
sphere norms. We first upscaled the original data from 30-minute to a 
2-hour resolution (e.g., 0:00–2:00 h). We then separated data from all 
available years into 52 non-overlapping periods of 7 days (e.g., Jan 
1st-7th), with any remaining days (e.g., December 31st) combined into 
the last period. Next, we calculated the median diel variation for each 
7-day period at 2-hour timesteps, noting that each 7-day period contains 
data from multiple (≥3) years of data. Last, we constructed a new 
characteristic composite diel-seasonal time series of each 7-day period 
over the course of a single year (i.e., 12 timesteps/day × 52 periods =
624 timesteps). Any gaps in the composite time series only exist when a 
site had missing data larger than a composite window size (e.g., all data 
from 0:00–2:00 h, from January 1st-7th were missing from all years). 
These were then filled through interpolation within each window and 
across the windows. If the interpolation filled >20 % of gaps within each 
time window or across windows, we dropped a site variable from further 
analyses. This composite time series ultimately reduced the large time 
series (see gray points in Fig. 1b) for further clustering analyses (see the 
red line in Fig. 1b).

For the preliminary tests, we ran similar analyses based on composite 
time series aggregated at 15-day/1-hour, 7-day/2-hour, and 5-day/3- 
hour (window length/temporal resolution) scales to assess the sensi
tivities of time series aggregation. The results suggested the aggregation 
windows/resolutions changed the site pairs’ distances marginally and 
potentially the clustering at a small scale (e.g., proximate sites) but did 
not impact the overall results substantially. We also tested the sensi
tivities of data record lengths by using sites with >10 years of available 
data (~110 sites). We compared the results against those generated from 
the middle 3-year and 6-year periods of the original record. We found 
that the record lengths had only marginal influence on the site pairs’ 
distances’. Finally, we briefly tested the impact of gap-filling on results 
for NEE, LE, and H fluxes using the AmeriFlux FLUXNET data product. 
We found generally good linear relationships between site pairs’ dis
tances from non-gap-filled and gap-filled data. Details of these pre
liminary tests were discussed in Supplementary Text S2 (Figures S1, S6- 
S10). Unless specified, all following results and discussions focused on 
the 7-day/2-hour aggregation, using the full data record from each site, 
and using non-gap-filled data from each site.

We interpreted the characteristic composite time series as a multi- 
year climatological representation of a site’s diel-seasonal dynamics. 
The extracted temporal features, particularly the phases, period, and 
amplitudes (Falge et al., 2002), reflect an ecosystem’s phenology (e.g., 
growing/dormant seasons, wet/dry periods) and ecophysiological po
tential (e.g., maximum daytime CO2 uptake vs. nighttime respiration, 
daytime vs. nighttime evapotranspiration). While conceptually similar 
to other frequency-based methods (e.g., Fourier, wavelet), our proposed 
method does not impose a specific shape function (e.g., sinusoidal wave, 
mother wavelet) in constructing the composite time series. Thus, our 
composite time series can capture irregular or asymmetric diel/seasonal 
patterns (e.g., afternoon water stress (Vickers et al., 2012)) or abrupt 
transitions (e.g., monsoon onset, Scott et al., 2009). Practically, this 
climatological composite time series averaged out interannual vari
ability, smoothed out the random noise around high-frequency sampling 
error (Moncrieff et al., 1996), filled a portion of the data gaps in the 

Table 1 
A summary of sites used in univariate, multivariate analyses, and the calcula
tions of the Harmonic Uniqueness Parameter. Sites needed ≥ 3 years of data 
from flux variables (NEE, LE, H, USTAR) to be included.

Number of Sites Used

Variable Univariate 
Analyses

Multivariate Analyses Harmonic Uniqueness 
Parameter

NEE 313 313 (All NEE, LE, H, 
USTAR required)

313 (All NEE, LE, H, 
USTAR required)LE 332

H 336
USTAR 338
NETRAD 287 Not Used Not Used
TA 328
VPD 326
SWC 215
GPP 186
RECO 186
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original records (Falge et al., 2001), and reduced the computational time 
of further clustering analyses (Aghabozorgi et al., 2015; Cheng and 
Adepeju, 2014).

2.2. Time series analysis and hierarchical clustering

To quantify the similarities among the composite time series, we 
computed the dynamic time warping (DTW) distances for each variable 
among all available sites (see Figures S2-S5 for example). DTW measures 
the distances between any two given time series, focusing on the 
generalized shape of the curve while allowing moderate compression or 
stretching, following Giorgino (2009): 

D(x, y) = min
(
dϕ(x, y)

)
(1) 

where D(x, y) is the DTW minimum distance (dϕ) between the time series 
x and y of a given variable from two sites, given that DTW methods allow 
for distortion in the time series. In other words, due to the warping 
nature of DTW, where a time series can be stretched or compressed 
while being evaluated against another time series, the DTW distance is 
the difference between the x and y data with the least amount of 
deformation applied to the time series. Given that the time series was 
prepared with the same lengths and resolutions, the DTW distances 
mainly reflect the difference in diel/seasonal amplitudes and phases. 
The proxy R package was used to extract the DTW distances (Buchta, 
2022). We interpreted the DTW distances as a measure of similarity 
between two sites in the target variable’s climatological diel/seasonal 
dynamics, e.g., any deviation in seasonal phases or differences in am
plitudes. To allow comparison between variables, we normalized DTW 
distances using the minimum and maximum DTW distances of each 

variable across all site pairs: 

D∗
v(x, y) =

Dv(x, y) − min (Dv(x, y))
max(Dv(x, y)) − min(Dv(x, y))

(2) 

where v represents the variable, including NEE, H, LE, USTAR, NETRAD, 
SWC, TA, and VPD.

We then adopted hierarchical clustering to construct the hierarchy of 
site clusters (i.e., clustering trees, Fig. 1c) based on the sites’ DTW dis
tances. Hierarchical clustering assumes all sites as a single cluster 
initially and consecutively splits it into separate clusters and, ultimately, 
the end nodes of each individual site (Aghabozorgi et al., 2015). The 
radial length of a branch after a split indicates the similarity between the 
split branches’ end nodes (sites), with shorter branch lengths indicating 
more similarity. We chose this approach because it retains a relative idea 
of general similarity between clusters/sites, i.e., the longer a radial 
branch after a split indicates a relatively larger degree of difference or 
divergence. To aid the interpretation, we trimmed the clustering trees to 
the optimal number of clusters determined based on the performance of 
six cluster validity indices (Arbelaitz et al., 2013), searching between 30 
and 75 clusters (Supplementary Text S3). Unless specified, we focused 
on the optimized clustering groups in further sections. Still, the un
trimmed clustering trees were presented (e.g., Fig. 1c). For better pre
sentation, clustering groups with fewer than five sites were not 
color-coded separately in the clustering trees and maps. However, it is 
worth noting that these small groups represented sites that were unique 
and relatively different from others (e.g., groups 2–3 in Fig. 1c). The 
analyses above were carried out for each of the eight target variables (i. 
e., univariate) for all available sites (i.e., 215 (SWC) to 338 (USTAR)) 
and then for all flux variables combined (i.e., multivariate, 313 sites). 

Fig. 1. Conceptual figure of the methodical framework (a). Panel (b) is an example of the composite time series of NEE from the US-Oho site—a deciduous broadleaf 
forest in the Eastern Temperate Forests (See Figure S1 for an enlarged version). Gray points and red lines denote the original and composite time series. The 
composite time series captured the dormant/growing seasons and the diel amplitudes of daytime uptake and nighttime respiration. Panel (c) shows an example of a 
radial tree diagram (i.e., dendrogram) of site clustering, and subplots show composite time series from the selected groups (See Figures S27 and S28 for 
enlarged versions).
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Additionally, we ran similar univariate analyses for 186 sites with GPP 
and RECO data (Table 1). The dtwclust and ape R packages were used in 
the clustering analyses and tree generation mentioned above (Paradis 
and Schliep, 2023; Sarda-Espinosa, 2023).

We further examined the dependency of site pairs’ DTW distances by 
IGBP group, ecoregion, and spatial proximity. We compared the DTW 
distances across sites within and across IGBP groups or ecoregions using 
the analysis of variance (ANOVA) and Tukey post hoc tests (Sokal and 
Rohlf, 1995). We also examined the dependency of site pairs’ DTW 
distances on the sites’ spatial proximity using a moving average lowpass 
filter. The above tests explored whether sites in the same IGBP groups, 
ecoregions, or spatial proximity had lower DTW distances than those 
across groups or far apart. Lastly, to provide a multivariate similarity, 
we calculated the Harmonic Uniqueness Parameter (HUP) for each site 
as the mean of the normalized DTW distances to all other sites: 

HUP(x) =
1

NV

(
∑NV

v=1

1
NY

(
∑NY

y=1
D∗

v(x, y)

))

(3) 

where NY and NV denote all other sites and all target variables, i.e., NEE, 

LE, H, and USTAR, respectively (Table 1). In theory, HUP can range from 
0 to 1, but in practice, most values fall between 0.15 and 0.35, with a 
higher HUP value indicating a site’s relatively higher uniqueness.

3. Results

3.1. Site clustering

Environmental variables (e.g., TA, NETRAD) showed site clustering 
mainly reflecting the expected climate gradients, primarily but not 
exclusively evident along the latitudinal gradient (see Figs. 2a and S9a 
for maps, Figures S11 and S15 for composite time series, and 
Figures S12b and S16b for clustering trees). VPD also showed changes 
with latitude, along with small clusters in separate geographic regions. 
For example, there was a cluster of 17 sites mostly in Florida (light 
purple, Figures S19-S20) and a cluster of 22 sites primarily from the 
Northwestern Forested Mountains (dark purple). Several clusters 
emerged for about 28 sites in the North American Deserts and Southern 
Semi-Arid Highlands, featuring high spring VPD declining after the 
summer monsoon (Groups 1–15, Figures S19-S21). For SWC, there was 

Fig. 2. Geographic locations of AmeriFlux sites clustered based on TA (a) and NEE time series (b). Color codes indicate the sites’ clustering groups. For simplicity, all 
groups with fewer than five sites are shown in gray. See Figures S16a, S20a, S24a, S32a, S36a, S40a, S44a, and S48a for similar maps using the NETRAD, VPD, SWC, 
H, LE, USTAR, GPP, and RECO time series and an interactive map at https://cartoscience.users.earthengine.app/view/flux-networks.
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no clear large-scale geographic or ecoregion-specific pattern 
(Figure S24a), reflecting the cross-site heterogeneity (e.g., ecohydrol
ogy, soil properties, local topography, measurement depth, etc.). In sum, 
clustering based on environmental variables generally reflected the 
sites’ climate and ecoregions, demonstrating the general robustness of 
the clustering methods. Latin America had a sparse, relatively low site 
density. Hence, sites from those regions were often clustered into small 
groups.

The univariate clustering based on flux variables (i.e., NEE, LE, H, 
USTAR) showed more uneven distributions in the clusters compared to 
the environmental variables. Often, around 30–50 sites were grouped 
into 20–40 small groups with only one or a few sites, while the rest were 
grouped into 1–2 large groups (>100 sites) and a few intermediate-size 
groups (15–70). To some extent, the uneven clustering reflected the 
unevenly distributed nature of the AmeriFlux network, and thus, sites 
from underrepresented IGBP groups (e.g., urban, open water), ecor
egions (e.g., Hawaii, ecoregions in Latin America), geolocations (e.g., 
mountainous areas), or disturbance/management regimes (e.g., alfalfa 
(periodic harvest), rice paddy (seasonal flooding)) had distinct diel- 
seasonal dynamics in the fluxes and were clustered into unique, small 
groups. The rest of the sites, while varying marginally or moderately 
among each other, were grouped into a few large or intermediate clus
ters. For example, NEE had one large cluster of 156 sites across multiple 
ecoregions and IGBP groups (Group 11, Figs. 2b, S21, Tables S6-S7). 
Group 15 (62 sites) was primarily deciduous broadleaf forests (41.9 %) 
and grasslands (17.7 %) in the Eastern Temperate and Northern Forests. 
Group 9 (28 sites) was nearly all croplands (85.7 %). In contrast, 32 
groups contained only 1–3 sites, mostly from underrepresented IGBP 
groups and ecoregions. About 186 out of the 313 sites with NEE had 
partitioned GPP and RECO for our analyses. The GPP and RECO clus
tering showed a larger proportion of sites within the network were 
classified as unique amid a smaller number of sites within each group 
(Figures S44 and S48). RECO has two groups with 14 % of sites, while 
GPP has groups of 28 % and 12 % of sites. In general, GPP and RECO 
showed a relatively even cluster distribution compared to using NEE. 
Also, GPP and RECO showed more distinct annual mean fluxes among 
groups than NEE (Figure S53).

For LE, ~67 % of the sites were clustered into two large groups of 
114 and 110 sites across North America, except for the southeastern 
region (Figure S32, Tables S6-S7). Around 50 sites, mostly from the 
Eastern Temperate Forests and Great Plains, were clustered into 3 
intermediate-size groups. For H, ~71 % of the sites were clustered into 
two large groups of 121 and 119 sites across North America, except for 
the southwestern region (Figure S36, Tables S6-S7). Eighteen sites, 
mainly from the Northern American Deserts and Southern Semi-Arid 
Highlands, were grouped together (dark purple, Figure S36), and 14 
sites were grouped together largely from the Northwestern Forests 
Mountains and Mediterranean California (blue, Figure S36). For USTAR, 
~51 % of sites were clustered into one large group of 174 sites across 
multiple ecoregions (Figure S40). The LE, H, and USTAR clusters 
generally reflected the differences in the annual mean fluxes 
(Figure S53).

The multivariate clustering based on all flux variables showed a 
relatively even cluster distribution featuring multiple intermediate-size 
groups (Figs. 3–4, Table S8-S9). The largest Group 59 (70 sites) spanned 
multiple ecoregions and IGBP classifications (dark purple, Fig. 3). This 
group is characterized by low annual mean LE, H, and NEE (dark purple, 
Fig. 4). Group 60 (62 sites) included mostly grasslands (35.5 %) and 
croplands (41.9 %) in the Eastern Temperate Forests and Great Plains, 
featured by moderate LE, low H, and various NEE (light purple 
Figs. 3–4). Group 55 (32 sites) was located in North American Deserts, 
Mediterranean California, and Southern Semi-Arid Highlands, with high 
H but low NEE and LE (light blue Figs. 3–4). Groups 29 and 31 (19 and 
16 sites) were dominated by deciduous broadleaf and evergreen nee
dleleaf forests across Eastern Temperate and Northern Forests, with high 
USTAR and moderate to high NEE (orange and yellow, Figs. 3–4). 

Notably, all of the groups above had at least one NEON or AmeriFlux 
Core site in each group (Fig. 3b), suggesting these long-term sites 
generally represented the (current) major clusters of the network. It is 
also worth mentioning that several known adjacent sites over similar 
ecosystems (e.g., US-Ha1/US-xHA, US-Bar/US-xBR, US-Kon/US-xKZ, 
US-EML/US-xHE) were clustered into the same groups, demonstrating 
the robustness of the site clustering. Last, 84 sites were clustered into 58 
small groups (gray, Fig. 3). These sites were mainly from currently un
derrepresented IGBP groups (e.g., urban, open water, snow/ice), ecor
egions (e.g., Hawaii, and ecoregions in Latin America), geographical 
features (e.g., mountain, floodplain), and disturbance/management re
gimes (e.g., periodic harvest, wildfire, prescribed burning, forest plan
tations, restored wetlands).

3.2. Site similarity

The connection between clustering results and climate is explored 
using mean air temperature and precipitation at the site level (Fig. 4k 
and S51). Through this lens, sites are more likely to be included in the 
largest NEE cluster (Group 11) if they are drier, with annual precipita
tion of <1000 mm, while sites more likely to be included in smaller, 
more unique clusters have typically hotter and wetter climates 
(Figure S54a). A similar clustering is seen in LE (Figure S54b) with a 
threshold of 1000 mm precipitation and of <10 ◦C for TA, while there 
were larger amounts of overlap between clusters in climate space for H 
and USTAR (Figures S54c-S54d). When sites are clustered based on all 
flux variables (NEE, LE, H, USTAR, Fig. 4k), there are large clusters in 
the dry and cold (<1000 mm, and <10 ◦C) and also dry and hot (<1000 
mm, and >10 ◦C) climate spaces, while small and unique clusters again 
are more likely in hot and wet climates.

We further examined the normalized DTW distance—a measure of 
similarity in the temporal dynamics between site pairs—across sites 
within and among the selected ecoregions and IGBP groups (Figs. 5 and 
S52). Environmental variables generally showed lower DTW distances 
(i.e., similar) within the same ecoregions, except for NETRAD in 
Northwestern Forested Mountains, VPD in North American Deserts and 
Mediterranean California, and SWC in Eastern Temperate Forests and 
Mediterranean California (Figure S55e-h). For IGBP groups, shrublands 
and wetlands tended to have higher inter-site DTW distances than all 
others (Figure S55a-d). It should be noted that SWC was not always 
measured at wetland sites, particularly at the wetter/inundated loca
tions, potentially biasing the current results. Flux variables generally 
showed lower DTW distances within the same ecoregions and IGBP 
groups (Fig. 5). However, several groups had high DTW distances closer 
to or even higher than the cross-group DTW distances. For example, sites 
in Mediterranean California showed much higher inter-site variability 
for NEE, LE, and H than other groups, as did sites in Eastern Temperate 
Forests for NEE and LE, Northern Forests for USTAR, and Northwestern 
Forested Mountains for H and USTAR. For IGBP groups, croplands had 
higher DTW distances for NEE and LE than the others. Wetlands had 
higher DTW distances for LE, shrublands had higher DTW distances for 
H, and evergreen needleleaf forests had higher DTW distances for 
USTAR. In sum, while sites in the same IGBP groups and ecoregions 
generally showed similar flux dynamics (lower DTW distances), the 
above exceptions highlighted the inter-site variability, potentially as 
high as that across groups, for certain ecoregions and IGBP groups.

When examining the site pairs’ similarity against the spatial dis
tance, most sites showed high similarity in adjacent locations and 
became distinct with an increased distance as expected (Figs. 6 and S46- 
S52). Yet, the dependence of similarity on spatial distance differed by 
variable and IGBP group, and in some cases, bimodal behavior was 
apparent. One example of bimodal site-pair similarity is NEE for Eastern 
Temperate Forests (Fig. 6 g), highlighting how most sites are similar 
within that ecoregion, but certain site pairs show dissimilar NEE, even at 
relatively close distances across the landscape. Another example of 
difference among IGBP groups is the larger amount of variability in NEE 
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Fig. 3. Site locations (a) and radial tree diagram (b) of AmeriFlux sites clustered using all flux time series (i.e., NEE, LE, H, USTAR). Color codes in both panels 
indicate the sites’ clustering groups. For simplicity, all groups with fewer than five sites are in gray colors. Each end node in panel (b) represents an AmeriFlux site 
specified by its Site ID, marked with asterisks (*) and plus signs (+) for the NEON and AmeriFlux Core sites. The radial distance at which a branch is split indicates the 
similarity of the split branches’ end nodes (sites). For example, a split closer to the center (origin) suggests that the divided branches (and their end nodes) are very 
dissimilar. See Figures S43-S44 for similar tree diagrams highlighted by ecoregion and IGBP classification.
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in evergreen needleleaf forests (Fig. 6b) compared to deciduous forests 
(Fig. 6d). In general, LE and NETRAD showed an apparent decrease in 
similarity with distance (Figures S49 and S52), implying site pairs are 
more likely to show divergent behavior for those variables across the 
landscape. In contrast, USTAR, VPD, and SWC showed a weak rela
tionship between the sites’ similarity and distance (Figures S58, S61- 
S62), with a larger variability between sites at close spatial scales. Dif
ferences between IGBP classifications exist, particularly for NEE in for
ests and croplands.

The Harmonic Uniqueness Parameter revealed sites that were rela
tively unique and distinct from others in the current network (Fig. 7). At 

the continental scale, sites in Hawaii and most ecoregions in Latin 
America showed a relatively high HUP, reflecting their current under
representation in the AmeriFlux network. However, at a finer scale, 
several sites from specific IGBP groups, mountains, or management re
gimes also revealed high HUP (>0.24). For example, around 13 moun
tainous sites from the Northwestern Forested Mountains (e.g., US-CPk, 
US-GLE, US-MtB) and Mediterranean California (e.g., US-SO2, US-SO3) 
showed their relative uniqueness. Urban (e.g., US-INc) and open water 
(e.g., US-Pnp, US-Men) sites, with distinct flux dynamics, had high HUP. 
Lastly, several managed forests from the Eastern Temperate Forests (e. 
g., US-NC2, US-SP2, US-Cst) and croplands from Mediterranean 

Fig. 4. Distribution of AmeriFlux sites by (a-j) annual mean fluxes and (k) mean air temperature and annual precipitation. Color codes denote clusters using all flux 
variables in all panels, similar to Fig. 3. Figures b, d, e, g, h, and i are scatterplots between annual mean NEE, LE, H, and USTAR. Each dot represents an AmeriFlux 
site. Figures a, c, f, and j show boxplots of annual mean fluxes by clusters. Boxes and whiskers showed each cluster’s interquartile ranges (IQR, 25th-75th percentiles) 
± 1.5 * IQR. Figure (k) uses the Climatic Research Unit (CRU) time series (TS) 4.05 gridded dataset from 1981 to 2020 (0.5 × 0.5◦). For better presentation, the figure 
scales were zoomed in to focus on the main groups. A few sites with extremely large/small NEE (US-Bi2, US-Inc, US-Ing, US-SuS, US-SuW), H (AR-TF1, AR-TF2, US- 
BMM, US-ICs, US-xNW), and USTAR (US-GLE) were not shown.
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California (e.g., US-Tw3 (alfalfa) and US-Twt (rice)) also showed high 
HUP.

4. Discussion

4.1. Site similarity and dependency

In this work, we show sites across the AmeriFlux network are 
generally similar to each other when compared to the same ecoregion or 
IGBP type, as opposed to sites from other ecoregions or IGBP type. 
However, in some cases, such as LE fluxes in wetlands and in the Med
iterranean ecoregions, sites within those groups are more dissimilar 
relative to each other than relative to a site from outside of that ecor
egion or IGBP type, highlighting where some ecosystem classification 
schemes could be potentially insufficient. When examining site simi
larity as a function of spatial distance, we find that sites closer in 
proximity to each other are generally more similar to each other, but 
there is a perhaps surprisingly large amount of variation in the degree of 
spatial similarity between ecoregion and IGBP type. As our approach 
was solely based on the time series dynamics, without inputting the 
sites’ characteristics, our results provided an independent and quanti
tative way to evaluate and revisit commonly adopted site classifications, 
such as IGBP groups and ecoregions.

One goal of flux networks is to provide sufficient, representative 
information for the regions, continents, or globe, ultimately enabling the 
upscaling of fluxes from individual sites’ footprints to the terrestrial 
globe (Loescher et al., 2022). Focusing on a few ecoregions with abun
dant sites, we found Northwestern Forested Mountain, Mediterranean 
California, and Eastern Temperate Forests had substantial cross-site 

variability in flux dynamics (Figures S63, S64, S65, S68), even as high 
as that across ecoregions. This large within-region variability indicates 
the landscape complexity inherent within the ecoregion concept, and 
ultimately, there may not be a one-size-fits-all for ecoregion classifica
tion. Ecoregion classifications, such as those adopted in this study, were 
often based on climate, land-surface forms, or potential natural vege
tation. Similarly, many studies that evaluated observational network 
representativeness were often based on driver variables of fluxes or site 
characteristics (Hargrove et al., 2003; Schimel et al., 2007; Sundar
eshwar et al., 2007). Our results suggested that those approaches’ as
sumptions may need to be revisited or further refined, as the dynamics in 
the drivers may not be sufficient to reflect the dynamics in fluxes.

Often, upscaling research is based on quantifying the flux sensitivity 
to drivers within specific functional classifications such as plant func
tional type. The implicit assumption of this approach is that a single site 
provides sufficient detail to capture target processes and with adequate 
abstraction to allow upscaling and extrapolation to regions or the globe 
(Pacala and Kinzig, 2002). The functional classification assumes that the 
flux towers’ footprints can represent other unmeasured areas if they 
share similar plant functional types. Clearly, models trained or param
eterized using data at the flux towers can be applied and upscaled to the 
terrestrial globe (Jung et al., 2020; Zheng et al., 2020). Here, we do not 
examine the relationship between fluxes and drivers across the land
scape but instead quantify how time series within the same functional 
classifications vary. Our results suggested that the IGBP groups—a 
commonly adopted classification—may be insufficient to capture the 
ecosystems’ flux dynamics (Page et al., 2024) and justified the need to 
seek other flux-based classifications, such as ecosystem functional types 
(Villarreal et al., 2018, 2019). Particularly, wetlands, shrublands, 

Fig. 5. The box plots of normalized dynamic time warping (DTW) distances for flux variables among selected IGBP groups (a-d) and ecoregions (e-h). Only groups 
with sufficient samples (>20 sites) were included. Black dashes and circles indicated each group’s medians and means. Gray boxes and whiskers showed each group’s 
interquartile ranges (IQR, 25th-75th percentiles) ± 1.5 * IQR. Different annotated letters indicate significant differences among groups. Abbreviations: ALL: all site 
pairs except those in the same group, ENF: evergreen needleleaf forest, DBF: deciduous broadleaf forest, CRO: cropland, GRA: grassland, SHB: open and closed 
shrubland, WET: wetland, NTF: Northern Forests, NWF: Northwestern Forested Mountains, ETF: Eastern Temperate Forests, GPL: Great Plains, NAD: North American 
Deserts, MCA: Mediterranean California. See Figure S55 for a similar figure for environmental variables.
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Fig. 6. Normalized site-pair dynamic time warping (DTW) distance as a function of site-pair distance for NEE across all site-pairs (a) and by (b, d, f, h, j, l) IGBP 
groups and (c, e, g, i, k, m) ecoregions. Only groups with sufficient samples (>20 sites) were included. Black lines represent moving average smoothing. Please refer 
to Fig. 5 for the IGBP and ecoregion abbreviations. See Figures S56-S62 for similar figures of other variables.
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croplands, and evergreen needleleaf forests showed high within-group 
variability in specific fluxes, highlighting the importance of other un
accounted functional properties such as plant species composition, stand 
age, salinity, hydrological regimes, and management in driving the 
observed cross-site flux variability (Hemes et al., 2019; Paul-Limoges 
et al., 2015; Qu et al., 2023; Vickers et al., 2012; Xiao et al., 2014; Xie 
et al., 2021).

Upscaling is challenging, particularly when extrapolating fine-scale 
point observations to a larger region (Newman et al., 2019). Flux 
towers typically sample an area of around 0.001–10 km2 (Chu et al., 
2021), and the measured fluxes are upscaled using a multitude of 
models, remote sensing products, and climate data sets to a regional or 
continental scale, i.e., 106–109 km2 (Jung et al., 2020; Zheng et al., 
2020). Even in adjacent areas, the validation of flux upscaling beyond 
the flux tower footprints is often limited (Hollinger et al., 2004; Oren 
et al., 2006; Post et al., 2015; Schmidt et al., 2012). We show that the 
degree to which processes change spatially is ecosystem dependent. We 
found that sites with the same IGBP type likely had similar temporal 
characteristics in fluxes when spatially proximal. This finding highlights 
the potential validity of upscaling that extrapolates single-point obser
vations to some distance across the landscape, although management or 
disturbance history at sites should be considered. The recent findings of 
Page et al. (2024) suggest that when using site climate to predict flux 
behavior, plant functional types provide limited information, but com
bined with the results presented here, there could be a spatial distance 
across the landscape within which scaling would be valid for a given 
ecosystem type. Future research should incorporate ancillary datasets 
such as remote sensing estimates of ecosystem function to help bridge 
the gap between the footprint scale (Chu et al. 2021) and the regional 
scale, given that the results here begin to quantify spatial similarity, but 
only between discrete flux footprints. Connecting these clustering re
sults to landscape-level ecosystem functioning data would help reveal 
the usefulness of scaling assumptions embedded in IGBP or similar 
ecosystem classification schemes.

4.2. Site clustering, interpretation, and implications

We advocate that our clustering of site data can serve as an alter
native guide to reorganizing and interpreting the AmeriFlux network. 
This time series clustering approach allows us to quantitatively organize 
the sites’ relationships, identify those unique to the current network, 
and group sites with similar temporal dynamics. For example, one can 

interpret our multivariate clustering as a quantitative measure of sites’ 
similarity in their flux dynamics, i.e., a flux-based classification of 
AmeriFlux sites. The information can inform future syntheses, upscaling 
studies, and model-data benchmarking on site selection/grouping, 
balancing between those unique sites and those sharing similar temporal 
dynamics with others.

One can use our clustering to identify sites with similar/distinct flux 
dynamics within the same IGBP groups, ecoregions, or georegions, i.e., 
test the hypotheses of (dis)similarity of flux dynamics. Multiple envi
ronmental variables (i.e., NETRAD, TA, VPD) showed an expected 
agreement between their clustering and ecoregions. The findings justi
fied a typical research design of utilizing multiple sites within the same 
ecoregion, expecting that climate and weather conditions would be 
similar. Many AmeriFlux sites were established ad hoc as site clus
ters—multiple co-located sites across gradients of land cover/land use, 
chronosequence stages, management, disturbance, edaphic and hydro
logical regimes (Chen et al., 2004; Biederman et al., 2018; Forsythe 
et al., 2020; Goulden et al., 2006; Knox et al., 2014; Law et al., 2001; 
Verma et al., 2005; Vickers et al., 2012). Furthermore, potential syn
thesis opportunities could arise by strategically pairing sites established 
independently but in the same ecoregions (Chu et al., 2023; Stoy et al., 
2023), i.e., post hoc site clusters (Bormann, 2012; Butterworth et al., 
2021; Chen et al., 2018; Zhang et al., 2020). In fact, several IGBP groups 
(e.g., evergreen needleleaf forest (76 sites), grassland (57), cropland 
(51)) and ecoregions (e.g., Eastern Temperate Forests (100), Great 
Plains (48), Northern Forests (40); Figures S63-S68) had relatively 
abundant sites, now allowing one to examine their (dis)similarity in flux 
dynamics and the underlying processes that drive cross-site variation 
within these groups.

Lastly, the current clusters of site data highlight what would be 
defined as a typical flux site across the AmeriFlux network and unique 
and underrepresented sites. Flux-based clustering generally showed an 
uneven distribution compared to the environmental variables, featuring 
a few intermediate to large groups and many unique, small groups of 
sites. Given how clustering algorithms function, with unique sites 
defining the edges of the clustering distribution, sites show relatively 
more similar behavior in the center. Hence, the flux variables of NEE, H, 
and LE show a small number of large groups, and within these large 
groups, there are site-to-site differences. Still, these differences are small 
compared to the sites at the edges of the clustering distribution. While 
large clusters exist, we also show the tree structure for each variable to 
show subgroup dynamics. The contrast among cluster sizes highlighted 

Fig. 7. The AmeriFlux sites highlighted by the sites’ Harmonic Uniqueness Parameter (HUP). HUP represents the multivariate similarity using all flux time series 
(NEE, LE, H, USTAR). A higher HUP value indicates a site’s relatively higher uniqueness.
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the significant ecological modulation by the ecosystems on the ex
changes of carbon, water, and energy with the atmosphere (Stoy et al., 
2009).

This work also explores the unique and underrepresented sites in the 
AmeriFlux network, motivating the establishment or incorporation of 
new/unregistered sites from those groups. First, many unique sites were 
from currently under-sampled IGBP groups (e.g., urban (US-INc), open 
water (US-Men, US-Pnp)) and ecoregions (e.g., Marine West Coast For
ests, Hudson Plains, Hawaii, and ecoregions in Latin America). One 
factor contributing to under-sampling here is similar to the mid-domain 
effect, where geographic patterns are influenced by physiographical 
boundaries such as mountain ranges or land-sea interfaces, causing a 
high degree of overlap of species ranges in the center of the shared 
geographic domain and lower species richness (and hence a unique 
assemblage of species) near the boundaries (Colwell and Lees, 2000). 
Here, we see sites closer to spatial boundaries and, therefore, further 
isolated, having a higher degree of uniqueness, e.g., based on HUP, eight 
out of the eighteen most unique sites are located in Hawaii and Latin 
America (US-SuW, US-SuS, CR-Fsc, BR-Sa3, BR-Npw, BR-Sa1, PR-xLA, 
and PR-xLA). Our results provided a quantitative measure of these sites’ 
uniqueness in flux dynamics to the rest of the network, reiterating the 
importance of recruiting sites from those groups to increase the net
work’s representativeness (Villarreal and Vargas, 2021). Second, several 
unique sites were known for geographical features (e.g., mountain, 
floodplain), disturbances (e.g., wildfire, insect outbreak), or manage
ment regimes (e.g., periodic harvest, prescribed burning, forest planta
tion, restored wetlands). For example, several mountainous sites in the 
Northwestern Forested Mountains (e.g., US-GLE, US-CPk, US-NR1, 
US-NR3, US-Vcp, US-Vcm, US-xRM, Figure S67) were clustered into 
small, separated groups. Several restored wetlands (US-Myb, US-Tw1, 
US-Tw4), croplands (US-Twt (rice), US-Tw3 (alfalfa), US-Bi2 (corn), 
and a pasture (US-Snd) co-located within a ~10-km radius in California 
were also separated into different groups (Figure S68). These examples 
highlight the strong influence of topography, land cover/use, and 
management in driving distinct flux dynamics (Chen et al., 2004; Duman 
et al., 2020; Flerchinger et al., 2019; Goulden et al., 2012; Hemes et al., 
2019; Xie et al., 2021), which may not be captured by the IGBP or 
ecoregion groups alone.

4.3. Justifications and limitations

We advise the readers to interpret our clustering in the context of the 
target variables, scales, features (e.g., periods and amplitudes), and 
underlying processes that drove the cross-site variation. Multiple envi
ronmental variables (i.e., NETRAD, TA, VPD) generally agree between 
the clustering and ecoregions. Also, several known co-located sites (e.g., 
US-Ha1/US-xHA, US-Bar/US-xBR, US-Kon/US-xKZ, US-EML/US-xHE, 
US-xBN/US-Prr) with similar underlying ecosystems were clustered into 
the same groups in multivariate flux clustering. Both results suggest the 
robustness of our approach. We discuss the potential limitations of our 
clustering analyses in the following paragraphs.

First, one issue to contend with now and into the future is the 
Modifiable Temporal Unit Problem (MTUP) (Cheng and Adepeju, 2014; 
Cöltekin et al., 2011). Shape-based time series clustering will depend 
upon the attribute extraction adopted by the analyses. We strategically 
focused on the diel and seasonal scales, which typically dominate the 
temporal dynamics of fluxes across sites (Chu et al., 2023; Stoy et al., 
2009). The flux dynamics at these two scales were mainly driven by 
dynamics in environmental conditions (e.g., radiation, temperature, 
VPD), vegetation physiology (e.g., assimilation, metabolism, water use), 
and vegetation phenology (Baldocchi, Falge, and Wilson, 2001; Stoy 
et al., 2005). Our clustering of sites generally reflected the influences of 
these abiotic and biotic processes. Admittedly, the aggregation process 
smoothed out the temporal information (and relevant processes) at 
other scales, such as the hourly (e.g., rain pulse), weekly (e.g., synoptic 
weather), or interannual scales (e.g., succession, disturbance, climate 

change). However, information such as management practices is 
apparent in the composite time series if the management actions were 
performed on roughly the same calendar dates each year. For example, 
US-Bi1 and US-Tw3 are alfalfa fields with regular mowing during the 
growing season that clearly impacts the flux dynamics. If one focuses on 
aggregating at other scales, we anticipate that the clustering results may 
change, shifting weight between the temporal processes that guide 
clustering. For example, most previous studies focused solely on sea
sonal dynamics, which typically highlight phase shifts in growing sea
sons (e.g., peak, duration) across ecosystem types (Falge et al., 2002; 
Wilson et al., 2003; Yang and Noormets, 2021) and focused more on the 
peak flux magnitudes and durations of growing seasons and less on the 
amplitudes of growing/non-growing seasons and daytime/nighttime. 
Lastly, the site clusters may vary from using one flux variable to another, 
highlighting the importance of considering multifaceted ecosystem re
sponses. Potentially, multivariate clustering provided a more compre
hensive view of the sites’ similarities and relationships.

Previous clustering work has often focused on climate and environ
mental data, but here we cluster sites based on the direct flux observa
tions themselves. One of the pioneer studies by Hargrove et al. (2003)
used climatic, physiographic, and edaphic factors to delineate ecor
egions, but suggested future work to incorporate and weight ecoregions 
by their carbon flux magnitude. A similar analysis by Kumar et al. 
(2023) for the LTAR Network found similar spatial representativeness 
across the conterminous United States, where larger regions have more 
generalized environments, and smaller regions are more specialized, 
while they noted that management practices were not considered. With 
this work focused on clustering ecosystem flux observations and not on 
clustering climate drivers of fluxes, we cannot estimate spatial locations 
of the network that are poorly represented, as previous network clus
tering work has done (Villarreal and Vargas, 2021). Instead, we high
light unique sites within the current network, and the results presented 
here should be taken as a parallel method to understand network 
representation.

Future research should explore the site similarity and clustering 
when large-scale standardized GPP and RECO become available. We 
strategically chose to focus on NEE rather than GPP and RECO for the 
following reasons. First, NEE is directly measured, while GPP and RECO 
are derived from NEE based on various models and assumptions. The 
flux partitioning process introduced additional model assumptions and 
potential biases (Vickers et al. 2009; Baldocchi et al. 2015). While varied 
in assumptions and implementations, flux partitioning generally in
volves models for RECO and/or GPP based on NEE data. Studies based 
on independent observations, such as stable C isotopes (Lee et al., 2020) 
and solar-induced chlorophyll fluorescence (Kira et al., 2021), suggested 
a potential overestimate of RECO from the common partitioning 
methods. Second, current partitioning algorithms can be problematic in 
nontypical cases (e.g., tropics, arctics, wetlands, open water). Parti
tioning NEE at these sites remains challenging because many theoretical 
or methodological assumptions are unlikely to be valid. Third, many 
efforts have attempted to generate a standardized, multi-approach 
ensemble of partitioned products across the networks (e.g., FLUX
NET2015, Pastorello et al., 2020). At the time of writing, the FLUXNET 
Data System Initiative and the AmeriFlux ONEFlux processing project 
have about 56 % of our studied sites have standardized GPP and RECO 
available, limiting our analyses to only a subset of AmeriFlux sites. 
While additional sites are added frequently, based on the current site 
availability, GPP and RECO yield more evenly distributed clusters and 
distinct annual fluxes among groups. Future investigations using a larger 
number of sites with partitioned fluxes and different partitioning 
methodologies are worth approaching.

Our clustering analyses were also constrained by the current site 
locations and their distribution within the network, reflecting the un
evenly partitioned clusters in flux variables. Several IGBP groups (e.g., 
snow/ice, water, urban, barren land, deciduous needleleaf forest) and 
ecoregions (e.g., Arctic Cordillera, Hudson Plains, Marine West Coast 
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Forests, Temperate Sierras, and most ecoregions in Latin America) had 
no or only a few flux sites currently in AmeriFlux (Perez-Quezada et al., 
2023). The few available sites from these groups were often clustered 
into unique, small groups distinct from other clusters (i.e., large DTW 
distance). On the other hand, several IGBP groups (e.g., evergreen 
needleleaf forest, grassland, cropland) and ecoregions (e.g., Eastern 
Temperate Forests, Great Plains, Northern Forests) had relatively 
abundant sites, further revealing finer-granular (i.e., low/moderate 
DTW distance) sub-clusters within each group (Figures S63-S65). The 
contrast between the small and large groups implied that more undis
covered clusters in undersampled groups/ecoregions may emerge as the 
AmeriFlux network grows and expands.

5. Conclusion

We used an empirically based, harmonic approach to cluster the 
AmeriFlux sites based on their time series features independent from the 
commonly adopted IGBP classifications or ecoregions. Such an approach 
quantified sites’ (dis)similarity in diel/seasonal amplitudes and phases 
of fluxes, reflecting the effects of climate, plant phenology, and 
ecophysiological potentials. While most environmental variables 
(NETRAD, TA, and VPD) showed an evident latitudinal/regional clus
tering as expected, flux variables revealed an uneven clustering with 
many small, unique groups and a few large to intermediate groups. The 
contrast highlighted the strong biological modulation of ecosystem CO2, 
water, and energy fluxes, and this modulation varied spatially across the 
landscape. Many unique sites were from currently under-sampled IGBP 
types and ecoregions, with very distinct flux dynamics compared to the 
rest of the network. Yet, at a finer-granular level, local topography, 
disturbance, management, edaphic, and hydrological regimes further 
drove the flux dynamics difference within the same IGBP groups and 
ecoregions. We suggest that our clustering can be used to better interpret 
the AmeriFlux network, thereby identifying sites with similar/distinct 
flux dynamics for future cross-site syntheses. The information generated 
from the clusters can also inform future upscaling studies and model- 
data benchmarking on site selection and grouping. Finally, our clus
tering analysis highlighted unique and underrepresented sites in the 
AmeriFlux network, motivating the establishment or incorporation of 
new/unregistered sites from underrepresented groups, such as IGBP 
types of snow/ice, open water, urban, barren land, and deciduous nee
dleleaf forest, and ecoregions of Arctic Cordillera, Hudson Plains, Ma
rine West Coast Forests, Temperate Sierras, and Latin America.
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