Agricultural and Forest Meteorology 372 (2025) 110686

. . : ' A Agricultural
Contents lists available at ScienceDirect -

an
Forest Meteorology

Agricultural and Forest Meteorology e

s
ELSEVIER journal homepage: www.elsevier.com/locate/agrformet

Network of networks: Time series clustering of AmeriFlux sites

David E Reed """ ®, Housen Chu®-" ®, Brad G. Peter ©, Jiquan Chen “'®,

Michael Abraha "%, Brian Amiro ", Ray G. Anderson'®, M. Altaf Arain’, Paulo Arruda K
Greg A. Barron-Gafford'®, Carl Bernacchi ™, Daniel P. Beverly ", Sebastien C. Biraud “®,

T. Andrew Black °, Peter D. Blanken "®, Gil Bohrer “®, Rebecca Bowler ', David R. Bowling°®,
M. Syndonia Bret-Harte ‘®, Mario Bretfeld " @, Nathaniel A. Brunsell '@, Stephen H. Bullock "' ®,
Gerardo Celis*, Xingyuan Chen’®, Aimee T. Classen “**, David R. Cook “", Alejandro Cueva *“®,
Higo J. Dalmagro *“®, Kenneth Davis **®, Ankur Desai*'®, Alison J. Duff *¢

Allison L. Dunn ", David Durden®, Colin W. Edgar, Eugenie Euskirchen ', Rosvel Bracho ™,
Brent Ewers ““, Lawrence B. Flanagan *'®, Christopher Florian®, Vanessa Foord "™ ®,

Inke Forbrich *", Brandon R. Forsythe “, John Frank “°, Jaime Garatuza-Payan ",

Sarah Goslee ““®, Christopher Gough *, Mark Green **®, Timothy Griffis "',

Manuel Helbig *"**"®, Andrew C. Hill *®, Ross Hinkle **,

Jason Horne ““@, Elyn Humphreys *’, Hiroki Ikawa “*,

Go Iwahana "?, Rachhpal Jassal °, Bruce Johnson "”, Mark Johnson """,

Steven A. Kannenberg "*®, Eric Kelsey ', John King "¢,

John F. Knowles ""®, Sara Knox """, Hideki Kobayashi bk@,

Thomas Kolb "', Randy Kolka *", Ken W. Krauss """, Lars Kutzbach "°,

Brian Lamb "7, Beverly Law "9, Sung-Ching Lee ""®, Xuhui Lee?,

Heping Liu ", Henry W. Loescher **, Sparkle L. Malone*,

Roser Matamala °", Marguerite Mauritz "', Stefan Metzger *""", Gesa Meyer "' ©,

Bhaskar Mitra " ®, J. William Munger " ®, Zoran Nesic °, Asko Noormets "

Thomas L. O’Halloran ", Patrick T O’Keeffe "?, Steven F. Oberbauer “°, Walter Oechel <*,
Patty Oikawa °, Paulo C. Olivas “/, Andrew Ouimette °,

Gilberto Pastorello “‘®, Jorge F. Perez-Quezada “¢®,

Claire Phillips “"®, Gabriela Posse “®, Bo Qu“/, William L. Quinton °, Michele L. Reba“,
Andrew D. Richardson “"®, Valentin Picasso “"®,

Adrian V. Rocha “°®, Julio C. Rodriguez ", Roel Ruzol ““,

Scott Saleska “", Russell L. Scott “, Adam P. Schreiner-McGraw ', Edward A.G. Schuur ",
Maria Silveira“’®, Oliver Sonnentag “, David L. Spittlehouse “", Ralf Staebler “*,

Gregory Starr ©®, Christina Staudhammer ' ®, Chris Still "1®, Cove Sturtevant®,

Ryan C. Sullivan *"®, Andy Suyker “*, David Trejo “,

Masahito Ueyama ““®, Rodrigo Vargas“", Brian Viner *°,

Enrique R. Vivoni dd@, Dong Wang d¢ Eric J. Ward “9¢®, Susanne Wiesner “"®,

Lisamarie Windham-Myers ', David Yannick < ®,

* Corresponding authors.
E-mail addresses: david.edwin.reed@gmail.com (D.E. Reed), hchu@Ibl.gov (H. Chu).

https://doi.org/10.1016/j.agrformet.2025.110686

Received 16 January 2025; Received in revised form 21 May 2025; Accepted 5 June 2025

Available online 24 June 2025

0168-1923/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nec-nd/4.0/).


https://orcid.org/0000-0002-8892-1423
https://orcid.org/0000-0002-8892-1423
https://orcid.org/0000-0002-8131-4938
https://orcid.org/0000-0002-8131-4938
https://orcid.org/0000-0003-0761-9458
https://orcid.org/0000-0003-0761-9458
https://orcid.org/0000-0002-6202-5890
https://orcid.org/0000-0002-6202-5890
https://orcid.org/0000-0003-1333-3843
https://orcid.org/0000-0003-1333-3843
https://orcid.org/0000-0001-7697-933X
https://orcid.org/0000-0001-7697-933X
https://orcid.org/0000-0002-7405-2220
https://orcid.org/0000-0002-7405-2220
https://orcid.org/0000-0002-9209-9540
https://orcid.org/0000-0002-9209-9540
https://orcid.org/0000-0002-3864-4042
https://orcid.org/0000-0002-3864-4042
https://orcid.org/0000-0001-5151-3947
https://orcid.org/0000-0001-5151-3947
https://orcid.org/0000-0002-3875-9042
https://orcid.org/0000-0002-3875-9042
https://orcid.org/0000-0002-4460-8283
https://orcid.org/0000-0002-4460-8283
https://orcid.org/0000-0001-5312-9324
https://orcid.org/0000-0001-5312-9324
https://orcid.org/0000-0003-1928-5555
https://orcid.org/0000-0003-1928-5555
https://orcid.org/0000-0003-2952-5129
https://orcid.org/0000-0003-2952-5129
https://orcid.org/0000-0002-2953-2575
https://orcid.org/0000-0002-2953-2575
https://orcid.org/0000-0002-1992-8381
https://orcid.org/0000-0002-1992-8381
https://orcid.org/0000-0002-5226-6041
https://orcid.org/0000-0002-5226-6041
https://orcid.org/0000-0001-8736-7216
https://orcid.org/0000-0001-8736-7216
https://orcid.org/0000-0003-1748-0306
https://orcid.org/0000-0003-1748-0306
https://orcid.org/0009-0008-7023-6162
https://orcid.org/0009-0008-7023-6162
https://orcid.org/0000-0002-5939-3297
https://orcid.org/0000-0002-5939-3297
https://orcid.org/0000-0002-7415-7209
https://orcid.org/0000-0002-7415-7209
https://orcid.org/0000-0003-1996-8639
https://orcid.org/0000-0003-1996-8639
https://orcid.org/0000-0001-5083-9208
https://orcid.org/0000-0001-5083-9208
https://orcid.org/0009-0007-0106-1904
https://orcid.org/0009-0007-0106-1904
https://orcid.org/0000-0002-4097-9140
https://orcid.org/0000-0002-4097-9140
https://orcid.org/0000-0002-3697-9439
https://orcid.org/0000-0002-3697-9439
https://orcid.org/0000-0001-9319-0621
https://orcid.org/0000-0001-9319-0621
https://orcid.org/0000-0002-2615-2040
https://orcid.org/0000-0002-2615-2040
https://orcid.org/0000-0003-3199-5250
https://orcid.org/0000-0003-3199-5250
https://orcid.org/0000-0002-6617-0884
https://orcid.org/0000-0002-6617-0884
https://orcid.org/0000-0002-1042-8452
https://orcid.org/0000-0002-1042-8452
https://orcid.org/0000-0003-2221-2111
https://orcid.org/0000-0003-2221-2111
https://orcid.org/0000-0002-9387-3702
https://orcid.org/0000-0002-9387-3702
https://orcid.org/0000-0002-0449-7654
https://orcid.org/0000-0002-0449-7654
https://orcid.org/0000-0001-9072-6806
https://orcid.org/0000-0001-9072-6806
https://orcid.org/0000-0001-6624-9536
https://orcid.org/0000-0001-6624-9536
https://orcid.org/0000-0002-0148-6714
https://orcid.org/0000-0002-0148-6714
https://orcid.org/0000-0002-4989-6317
https://orcid.org/0000-0002-4989-6317
https://orcid.org/0000-0002-4618-2407
https://orcid.org/0000-0002-4618-2407
https://orcid.org/0000-0003-2166-3156
https://orcid.org/0000-0003-2166-3156
https://orcid.org/0000-0002-7918-242X
https://orcid.org/0000-0002-7918-242X
https://orcid.org/0000-0003-1887-418X
https://orcid.org/0000-0003-1887-418X
https://orcid.org/0000-0002-8295-4494
https://orcid.org/0000-0002-8295-4494
https://orcid.org/0000-0002-3500-1842
https://orcid.org/0000-0002-3500-1842
https://orcid.org/0000-0002-4000-4888
https://orcid.org/0000-0002-4000-4888
https://orcid.org/0000-0002-2659-9459
https://orcid.org/0000-0002-2659-9459
https://orcid.org/0000-0002-5047-5464
https://orcid.org/0000-0002-5047-5464
https://orcid.org/0000-0001-7232-0458
https://orcid.org/0000-0001-7232-0458
https://orcid.org/0000-0001-9911-4363
https://orcid.org/0000-0001-9911-4363
mailto:david.edwin.reed@gmail.com
mailto:hchu@lbl.gov
www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2025.110686
https://doi.org/10.1016/j.agrformet.2025.110686
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

D.E. Reed et al. Agricultural and Forest Meteorology 372 (2025) 110686

Enrico A. Yepez *®, Terenzio Zenone ¥/, Junbin Zhao ‘¥,
Donatella Zona "

@ Yale School of the Environment, Yale University, New Haven, CT, 06511, United States

® University of Science and Arts of Oklahoma, Division of Science & Physical Education, OK, 73018, United States

¢ Department of Geography, Environment & Spatial Sciences, Michigan State University, East Lansing, MI, 48823, United States

4 Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94702, United States

€ Department of Geosciences, University of Arkansas, Fayetteville, AR, 72701, USA

f Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI, 48823, USA

8 LI-COR, 4647 superior street, Lincoln, NE, 68504, USA

h Department of Soil Science, University of Manitoba, Winnipeg, MB, R3T2N2, Canada

! USDA-Agricultural Research Service, US Salinity Laboratory, Agricultural Water Efficiency and Salinity Research Unit, Riverside, CA 92507-4617 USA
¥ School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, L8S 4K1, Canada

k Programa de P6s-Graduagao em Fisica Ambiental, Universidade Federal de Mato Grosso (UFMT), Cuiaba, Mato Grosso, Brazil
! University of Arizona. School of Geography, Development, & Environment, Tucson, AZ, 85721, USA

™ USDA Agricultural Research Service, Global Change and Photosynthesis Research Unit, Urbana, IL 61801, United States

" Paul O’Neill School of Public and Environmental Affairs, University of Indiana, Bloomington, IN 47405, USA

° Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

P Department of Geography, University of Colorado, Boulder, CO 80309-0260, USA

9 Department of Civil, Environmental & Geodetic Engineering, The Ohio State University, Columbus, OH, 43210, USA

" British Columbia Ministry of Forests, 499 George St. Prince George, BC, V2L 1R5, Canada

* School Of Biological Sciences, The University of Utah, Salt Lake City, UT 84112, USA

! Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA

"' Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, 30144, USA

V Dept of Geography and Atmospheric Science, University of Kansas, 1475 Jayhawk Blvd, Lawrence, KS, 66044, USA

" Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Baja California, Mexico

* Department of Anthropology and Environmental Dynamics Program, University of Arkansas, Fayetteville, AR 72701, USA

Y Earth System Measurements & Data, Pacific Northwest National Laboratory, Richland, WA, USA

* The University of Michigan Biological Station, University of Michigan, Ann Arbor, MI, USA

4 Ecology and Evolutionary Biology Department, University of Michigan, Ann Arbor, MI, USA

ab Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Lemont, IL 60439, United States

¢ El Colegio de la Frontera Sur, Unidad Villahermosa, Tabasco, 86000, Mexico

ad Programa de Pés-Graduagao em Ciéncias Ambiental, Universidade de Cuiaba (UNIC), Cuiabd, Mato Grosso 78065-900, Brazil
€ Earth and Environmental Systems Institute, College of Earth and Mineral Sciences, The Pennsylvania State University, United States
af Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI 53706, United States

3 US Dairy Forage Research Center, USDA Agricultural Research Service, Madison, WI 53706, United States

ah Department of Earth, Environment, and Physics, Worcester State University, Worcester, MA, 01602, USA

a NEON Program, Battelle, 1685 38th Street, Boulder, CO 80301, USA

4 School of Forest, Fisheries and Geomatics Sciences. University of Florida, Gainesville, FL 32611, USA

ak Department of Botany, Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82071, United States

al Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, TIK 3M4, Canada

@M British Columbia Ministry of Forests. 499 George St. Prince George, BC, V2L1R5, Canada

" Department of Environmental Sciences, University of Toledo, Toledo, OH, United States

4 USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO 80526, USA

# 5 de Febrero 818 Sur, Col. Centro Cd. Obregon, Sonora, 85000, Mexico

29 USDA Agricultural Research Service Pasture Systems and Watershed Management Research Unit, University Park, PA 16802, United States
@ Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, United States

 Department of Earth, Environmental, and Planetary Sciences, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
at Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, MN 55108, United States
@ Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada

@ GFZ Helmholtz Centre for Geosciences Potsdam, Germany

W USDA Forest Service, Northern Research Station, Grand Rapids, MN 55744, United States

@ University of Central Florida, Orlando, FL 32816, USA

& Department of Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada

# Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Sapporo, 0628555, Japan

b3 International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

> Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, S7N 3H5, Canada

b mstitute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, V6T 1Z4, Canada

bd Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, V6T 1Z4, Canada

be Department of Biology, West Virginia University, Morgantown, WV, 26506, USA

o Judd Gregg Meteorology Institute, Plymouth State University, Plymouth, NH 03264, United States

Y8 Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA

bh Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717 USA

Y Department of Geography, the University of British Columbia, Vancouver, BC, V6T 122, Canada

Y Department of Geography, McGill University, Montreal, QC H3A 0B9, Canada

Yk Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, 236-0001, Japan

Yl School of Forestry, Northern Arizona University, Flagstaff, AZ 86001 USA

bm US. Geological Survey, Lafayette, LA 70506, United States

b0 1 ouisiana Universities Marine Consortium (LUMCON), Chauvin, LA, 70344, USA

bo Institute of Soil Science, Center for Earth System Research and Sustainability (CEN), Universitat Hamburg, Hamburg, 20146, Germany
b0 Department of Civil & Environmental Engineering, Washington State University, Pullman, WA 99164, United States

b4 Forest Ecosystems & Society, College of Forestry, Oregon State University, Corvallis, OR, 97331, USA

br Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena 07745, Germany

b Institute of Alpine and Arctic Research, University of Colorado, Boulder, CO, 80301 USA

bt Biological Sciences, University of Texas at El Paso, 500W University Ave, El Paso, TX 79902, United States

bu AtmoFacts, Longmont, CO 80503, USA

Y Climate Research Division, Environment and Climate Change Canada, Victoria, BC, V8N 1V8, Canada

bw Information and Computational Sciences Department, The James Hutton Institute, Aberdeen, Scotland, AB11 6XJ, United Kingdom
% School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA


https://orcid.org/0000-0003-4746-573X
https://orcid.org/0000-0003-4746-573X

D.E. Reed et al.

Agricultural and Forest Meteorology 372 (2025) 110686

b Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, United States

bz Department of Forestry & Environmental Conservation, Clemson University, Clemson, SC, 29634, USA

@ Institute of Environment and Department of Biological Sciences, Florida International University, Miami, FL 33199, United States

< Department of Biology, San Diego State University, San Diego, CA 92182, United States

¢ Department of Earth and Environmental Sciences, California State University East Bay Hayward, CA 94542, United States

< Institute of Environment and Department of Earth and Environment, Florida International University, Miami, FL 33199, United States
€ USDA Forest Service, Northern Research Station, Durham, NH 03824, United States

< Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

& Department of Environmental Sciences and Renewable Natural Resources, University of Chile, Santiago, Chile

h USDA-ARS Northwest Sustainable Agroecosystems Research Unit, Pullman, WA 99163, United States

<! Instituto de Clima y Agua, CIRN, INTA, Buenos Aires, Argentina

d Département de géographie, Université de Montréal, Montréal, QC H2V 0B3, Canada

<k Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada

<l USDA, ARS, Delta Water Management Research Unit, Jonesboro, AR. 72401, United States

™ Northern Arizona University, School of Informatics, Computing, and Cyber Systems, and Center for Ecosystem Science and Society, Flagstaff AZ 86011, USA
" Department of Plant and Agroecosystem Sciences, University of Wisconsin Madison, Madison, WI 53706, United States

© Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 45665, United States

P Departamento de Agricultura y Ganaderia, Universidad de Sonora, Hermosillo, 83000, Mexico

4 Center for Research on Sustainable Forests, University of Maine, 5755 Nutting Hall, Rm 263, Orono, ME 04469-5755, United States
" Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA

S Southwest Watershed Research Center, USDA-ARS, Tucson, AZ 85719, United States

“ USDA Agricultural Research Service, Cropping Systems & Water Quality Research Unit, Columbia, MO, 65211, United States

" Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011 USA
¥ Department of Soil, Water, and Ecosystem Science, University of Florida, Ona, FL, 33865 USA

W British Columbia Ministry of Forests, Victoria, BC, V8V 1T7, Canada

 Environment and Climate Change Canada, Downsview, ON, M3H 5T4, Canada

< Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA

% Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA

4 Graduate School of Agriculture, Osaka Metropolitan University, Sakai, 599-8531, Japan

4 School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA

de Sayannah River National Laboratory: Aiken, SC, United States

44 School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-8704, United States

de USDA-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Water Management Research Unit, Parlier, CA 93648-9757, USA
94 Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA

dg Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA

48 Technical University of Denmark, Department of Environmental and Resource Engineering, Kongens Lyngby, Denmark

4 USGS Water Resources Mission Area, 345 Middlefield Road, Menlo Park, CA 94025, United States

4 mstitute of Research on Terrestrial Ecosystems (IRET) National Research Council (CNR), Via Castellino 111, Napoli 80131, Italy

4k Department of Biogeochemistry and Soil Quality, Norwegian Institute of Bioeconomy Research, AS, 1433, Norway

ARTICLE INFO

Keywords:
AmeriFlux network
Eddy covariance
Site uniqueness
Site clustering

ABSTRACT

Environmental observation networks, such as AmeriFlux, are foundational for monitoring ecosystem response to
climate change, management practices, and natural disturbances; however, their effectiveness depends on their
representativeness for the regions or continents. We proposed an empirical, time series approach to quantify the
similarity of ecosystem fluxes across AmeriFlux sites. We extracted the diel and seasonal characteristics (i.e.,
amplitudes, phases) from carbon dioxide, water vapor, energy, and momentum fluxes, which reflect the effects of
climate, plant phenology, and ecophysiology on the observations, and explored the potential aggregations of
AmeriFlux sites through hierarchical clustering. While net radiation and temperature showed latitudinal clus-
tering as expected, flux variables revealed a more uneven clustering with many small (number of sites < 5),
unique groups and a few large (> 100) to intermediate (15-70) groups, highlighting the significant ecological
regulations of ecosystem fluxes. Many identified unique groups were from under-sampled ecoregions and biome
types of the International Geosphere-Biosphere Programme (IGBP), with distinct flux dynamics compared to the
rest of the network. At the finer spatial scale, local topography, disturbance, management, edaphic, and hy-
drological regimes further enlarge the difference in flux dynamics within the groups. Nonetheless, our clustering
approach is a data-driven method to interpret the AmeriFlux network, informing future cross-site syntheses,
upscaling, and model-data benchmarking research. Finally, we highlighted the unique and underrepresented
sites in the AmeriFlux network, which were found mainly in Hawaii and Latin America, mountains, and at under-
sampled IGBP types (e.g., urban, open water), motivating the incorporation of new/unregistered sites from these
groups.

1. Introduction

(Baldocchi et al., 2024; Novick et al., 2018), MexFlux (Tarin-Terrazas
et al., 2020; Vargas et al., 2013), and FLUXNET (Baldocchi, Falge, Gu,

Environmental observation networks, such as the eddy-covariance
flux measurement networks, are foundational for monitoring Earth’s
response to climate change, management, and natural disturbance
(Baldocchi et al., 2001; Jones et al., 2021; Loescher et al., 2022; Novick
et al., 2018). These networks are often built in a so-called "bottom-up"
fashion, where individual investigators establish research sites based
primarily on discrete research objectives, and then later, the sites are
combined into cooperative observation networks, such as AmeriFlux

et al., 2001). These collaborative bottom-up networks can have various
coverage and biased representations for different ecoregions and biome
types within the networks (Pallandt et al., 2022; Villarreal et al., 2019).
While the representativeness of sites is often not an issue for in-
vestigators doing research at individual sites, regional, continental, and
global evaluations rely on available sites’ data and are sensitive to bias
in site locations. The assessments of existing observation networks also
guided new site locations and future experimental designs (Malone
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et al., 2022; Pallandt et al., 2022; Papale et al., 2015; Sulkava et al.,
2011). For example, a recent study suggested that redistributing sites
could improve network representativeness from ~30-40 % to ~80-85
% across Latin America by adding additional optimally distributed sites
across the undersampled environmental space (Villarreal and Vargas,
2021). In another undersampled environment, largely bottom-up
emerging efforts are increasingly siting flux towers in urban locations
(e.g., Davis et al., 2017) to study human activity. Often, these bottom-up
networks consisted of groups of sites co-located within the same ecor-
egions across gradients of land cover/land use, plant functional types,
management (e.g., forestry, agriculture), disturbances (e.g., wildfire),
elevation, edaphic or hydrologic regimes (Chu et al., 2023; Stoy et al.,
2023).

Advancing our understanding of the Earth’s surface beyond the
footprint of individual tower sites requires observational sites and their
formed network to adequately represent the target domains (e.g., re-
gions, continents, and terrestrial globe). Ecoregions have been proposed
as a framework to design environmental observation networks where
the Earth’s surface is delineated into smaller, quantifiable, self-similar,
and non-overlapping units based on biophysical properties (e.g.,
climate, soil, geology, potential vegetation type, possible land use)
(Koenig, 1999; Omernik, 2004). Representative observation sites were
then determined and established for each ecoregion. Similarly, the In-
ternational Geosphere-Biosphere Programme (IGBP) was a global co-
ordination effort to classify the Earth’s land-surface into standard
ecosystem types, helping to foster global- to regional-scale science
through scaling individual sites (Loveland et al., 1999). This top-down
approach was adopted for the National Ecological Observatory
Network (NEON) and the Long-Term Agroecosystem Research (LTAR)
network, enabling research efforts and investments to be distributed in a
cost-, labor-, and time-efficient fashion (Bean et al., 2021; Jones et al.,
2021). Ultimately, the strength of an observation network lies in both
the individual sites, to address site-level questions, and in the repre-
sentatives of the distribution of sites, in order to address larger-scale
science.

Many attempts have been made to evaluate the networks’ repre-
sentativeness, often based on potential driver variables of fluxes (e.g.,
climate, soil, and plant functional type) (Hargrove and Hoffman, 2004;
Hargrove et al., 2003; Sulkava et al., 2011; Sundareshwar et al., 2007;
Villarreal et al., 2018). These studies assumed certain functional simi-
larities that a site could represent the flux behaviors at other unmea-
sured areas if they shared similar function types—an assumption also
adopted by most upscaling research (Jung et al., 2020; Xiao et al., 2010;
Zheng et al., 2020). With this assumption, flux measurements at sparse
locations can be extrapolated to regions, continents, and the globe by
controlling for patterns in ecosystem structure and climate sensitivities.
However, while ecoregions are often classified as discrete entities, the
boundaries may be gradual, such as the gradient from forest to savanna
to grassland, and may shift over time. Additionally, some ecoregions
may be inherently heterogeneous (Kumar et al., 2023), making it
incorrect to assume that all locations within an ecoregion will exhibit
the overall (mean) properties of the whole, a phenomenon known as the
ecological fallacy problem (Openshaw, 1984). While seemingly
straightforward, determining how a single site represents a larger region
often requires assumptions or simplifications, thus adding consider-
ations when scaling.

With rich time series data (>107 h) collected at hundreds of Amer-
iFlux sites, temporal information can be utilized to quantify site simi-
larities and directly test assumptions of representativeness. Different
approaches have been proposed to harness the temporal information of
the flux dynamics (Baldocchi, Falge, and Wilson, 2001; Falge, Tenhu-
nen, et al., 2002; Hill et al., 2024; Mahecha et al., 2007; Stoy et al., 2009;
Wilson et al., 2003). An emerging trend in the literature is that measured
fluxes at distinct locations can exhibit common behavior across time and
space, suggesting that a site can be representative of spatially proximal
locations to some degree (Hollinger et al., 2004; Poe et al., 2020; Post
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et al., 2015). A significant fraction of this temporal coherence occurs at
the diel and seasonal scales, highlighting the influence of climatology,
seasonality, and phenology on ecosystem fluxes (Stoy et al., 2009). With
ecosystem fluxes strongly connected to environmental conditions,
studies have shown that the functional behavior of ecosystem fluxes can
be independent of vegetation type and climatic region, with an example
of high-latitude ecosystems might behave similarly to tropical ecosys-
tems under similar environmental conditions (Krich et al., 2021), and
that spatial coherence can be on the order of 400 km based on the
model-data assessment (Hilton et al., 2013). Across the upper Mid-
western U.S., Poe et al. (2020) demonstrated that a cluster of sites from
multiple ecosystem types has high temporal and spatial coherence,
implying that flux information can be scalable among sites and across
landscapes (Reed et al., 2021). Although there is currently a large
amount of data available, relatively little work has been done on
quantifying how similar (or dissimilar) data from sites are to each other
at a network scale, and it is largely assumed that sites within ecoregions
are similar and data from across ecoregions are dissimilar.

Here, we propose a novel approach to quantitatively examine flux
sites’ similarity of measured ecosystem fluxes by extracting key time
series characteristics—diel and seasonal dynamics. Harmonic analyses
will be performed on the extracted time series features to explore their
similarity and potential grouping among sites using hierarchical clus-
tering. We will compare the clustering results along climatological
gradients and across commonly adopted ecosystem classi-
fications—ecoregions and IGBP vegatation types—to assess the degree
of uniqueness of these clusters. This study addresses the following
questions: 1) Do sites from the same ecoregion or IGBP types share
similar time series characteristics? Here, we hypothesize that sites
within the same ecoregion (or IGBP type) have higher similarity than
sites across groups. 2) Is the similarity of time series characteristics
among sites a function of spatial distance? We expect the extent of time
series similarity to be distance-limited. 3) Within the AmeriFlux, which
sites, ecoregions, or IGBP types show distinct time series characteristics,
or are currently under-represented? Here, we expect ecoregions in Latin
America and high latitudes to be relatively poorly represented. Solutions
to these questions help disseminate the representativeness of existing
sites, identify underrepresented locations, allow for model-data bench-
marking of site selections, and thus establish a framework for using
existing site locations for cross-site examinations that can help interpret
patterns in the response of ecosystems to climate change, disturbance
events, and anthropogenic management.

2. Methods and materials
2.1. Flux observations and composite time series

Land-atmosphere exchange (i.e., flux) observations are made using
the eddy-covariance methodology (Baldocchi et al., 1988). A coalition of
researchers measure carbon, water, energy, and momentum fluxes in
ecosystems across the Americas and share these data via AmeriFlux to
facilitate large-scale meta-analysis (Novick et al., 2018). Flux and sup-
porting environmental data were retrieved from the AmeriFlux BASE
data product (accessed September 2023) (Chu et al., 2023). Starting
with all sites with data available, we first down-selected sites based on
the data records (i.e., > 3 years, allowing for robust extraction of time
series features) and availability of the core flux variables of the eddy
covariance methodology, including net ecosystem exchange (NEE) of
carbon dioxide (CO-), sensible heat flux (H), latent heat flux (LE), and
friction velocity (USTAR, i.e., a measure of momentum flux). The study
included 343 sites with at least one flux variable available, with 191
sites having at least 6 years of data. While focusing on the flux variables,
we also included in the analyses the main environmental variables used
to explain fluxes, including net radiation (NETRAD), air temperature
(TA), vapor pressure deficit (VPD), and soil water content (SWC).
NETRAD was used instead of photosynthetically active radiation (PAR)
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or shortwave incoming radiation (SW_IN) since more sites report
NETRAD (~88 %) compared to PAR (~77 %) or SW_IN (85 %). Our
preliminary tests showed similar results using either of these three ra-
diation variables. The top level of tower height for TA or VPD and of soil
column depth for SWC are used for further analyses if a site has multi-
level measurements. If not provided, VPD was calculated from TA and
relative humidity (RH) (Monteith and Unsworth, 2008). No gap-filled
data were used. While our analyses focused on directly measured ob-
servations mentioned above, we conducted supplemental analyses using
the derived ecosystem respiration (RECO) and gross primary production
(GPP) for a subset of sites (186) with the available AmeriFlux-FLUXNET
data product (accessed October 2024). This supplemental analysis
aimed to explore the sensitivity of using NEE against GPP/RECO. Still,
our study mainly focused on the large group sites (>300) with the core
flux variables (i.e., NEE, LE, H, USTAR) (Table 1). All variables
mentioned above were reported at a half-hourly or hourly resolution.
For readers interested in details of the AmeriFlux BASE and FLUXNET
data products, please refer to Chu et al. (2023) and Pastorello et al.
(2020).

Ancillary data, including sites’ geolocations, IGBP land-cover types,
and instrument heights, were retrieved from the AmeriFlux BADM
(Biological, Ancillary, Disturbance, and Metadata) data product
(AmeriFlux Management Project, 2020). The IGBP type was a
remote-sensing-based land classification that mainly considered the
current land cover/use, plant functional types, and phenology (Loveland
et al., 1999), i.e., an atomistic classification. Level I Ecoregions gener-
ated by the Commission for Environmental Cooperation were extracted
based on the sites’ geolocations (Commission for Environmental Coop-
eration, 1997; Griffith et al., 1998; Omernik, 2004). The ecoregion
delineation was based on Omernik’s framework (Omernik, 1987),
mainly considering the climate zones, land-surface forms, potential
natural vegetation, and soil types, i.e., a holistic classification. The study
sites span 16 IGBP types and 20 ecoregions (see Tables S1-S2 for a site
list and data citation and Table S3 for a breakdown of IGBP and ecor-
egion groups). Last, we used 30-year mean temperature and precipita-
tion from Climatic Research Unit (CRU) data to represent each site’s
long-term climatic condition (Harris et al., 2020).

All variables from the BASE data product were first filtered by their
respective expected plausible ranges (e.g., —50 °C-50 °C for air tem-
perature). If NEE was absent, we calculated it from turbulent CO; flux
(FC) and storage flux (SC). Nighttime FC was first filtered using USTAR
thresholds on a per-site basis, using the REddyProc library (Reichstein
et al., 2005; Wutzler et al., 2018). If not provided, storage flux was
assumed to be negligible at short-vegetation sites and calculated from
single-level CO2 concentration at tall-vegetation sites (Papale et al.,
2006). No gap-filled data were used to extract information from the
observation record unbiasedly (Vekuri et al., 2023). At this point, the
data were treated as original time series from each site and ready for

Table 1

A summary of sites used in univariate, multivariate analyses, and the calcula-
tions of the Harmonic Uniqueness Parameter. Sites needed > 3 years of data
from flux variables (NEE, LE, H, USTAR) to be included.

Number of Sites Used

Variable Univariate Multivariate Analyses Harmonic Uniqueness
Analyses Parameter

NEE 313 313 (All NEE, LE, H, 313 (All NEE, LE, H,

LE 332 USTAR required) USTAR required)

H 336

USTAR 338

NETRAD 287 Not Used Not Used

TA 328

VPD 326

SWC 215

GPP 186

RECO 186
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aggregation (Fig. 1a). For GPP and RECO, we used GPP_NT VUT_REF
and RECO_NT_VUT_REF variables from the AmeriFlux FLUXNET data
product. NT, VUT, and REF refer to nighttime-based partitioning, vari-
able USTAR threshold, and reference selected based on model efficiency
(Pastorello et al., 2020). A brief summary of flux partitioning can be
found in the Supplementary Text S1.

At each site, each variable was aggregated into a single annual
composite time series. This time series consists of data from multiple
years, consisting of diel-seasonal frequencies (Figs. 1b and S1), given
that diel and seasonal scales contain the most temporal information of
our target variables (Chu et al., 2023; Poe et al., 2020; Stoy et al., 2009).
All AmeriFlux data were reported in local standard time, and southern
hemisphere sites were not shifted temporally to match northern hemi-
sphere norms. We first upscaled the original data from 30-minute to a
2-hour resolution (e.g., 0:00-2:00 h). We then separated data from all
available years into 52 non-overlapping periods of 7 days (e.g., Jan
1st-7th), with any remaining days (e.g., December 31st) combined into
the last period. Next, we calculated the median diel variation for each
7-day period at 2-hour timesteps, noting that each 7-day period contains
data from multiple (>3) years of data. Last, we constructed a new
characteristic composite diel-seasonal time series of each 7-day period
over the course of a single year (i.e., 12 timesteps/day x 52 periods =
624 timesteps). Any gaps in the composite time series only exist when a
site had missing data larger than a composite window size (e.g., all data
from 0:00-2:00 h, from January 1st-7th were missing from all years).
These were then filled through interpolation within each window and
across the windows. If the interpolation filled >20 % of gaps within each
time window or across windows, we dropped a site variable from further
analyses. This composite time series ultimately reduced the large time
series (see gray points in Fig. 1b) for further clustering analyses (see the
red line in Fig. 1b).

For the preliminary tests, we ran similar analyses based on composite
time series aggregated at 15-day/1-hour, 7-day/2-hour, and 5-day/3-
hour (window length/temporal resolution) scales to assess the sensi-
tivities of time series aggregation. The results suggested the aggregation
windows/resolutions changed the site pairs’ distances marginally and
potentially the clustering at a small scale (e.g., proximate sites) but did
not impact the overall results substantially. We also tested the sensi-
tivities of data record lengths by using sites with >10 years of available
data (~110 sites). We compared the results against those generated from
the middle 3-year and 6-year periods of the original record. We found
that the record lengths had only marginal influence on the site pairs’
distances’. Finally, we briefly tested the impact of gap-filling on results
for NEE, LE, and H fluxes using the AmeriFlux FLUXNET data product.
We found generally good linear relationships between site pairs’ dis-
tances from non-gap-filled and gap-filled data. Details of these pre-
liminary tests were discussed in Supplementary Text S2 (Figures S1, S6-
S10). Unless specified, all following results and discussions focused on
the 7-day/2-hour aggregation, using the full data record from each site,
and using non-gap-filled data from each site.

We interpreted the characteristic composite time series as a multi-
year climatological representation of a site’s diel-seasonal dynamics.
The extracted temporal features, particularly the phases, period, and
amplitudes (Falge et al., 2002), reflect an ecosystem’s phenology (e.g.,
growing/dormant seasons, wet/dry periods) and ecophysiological po-
tential (e.g., maximum daytime CO5 uptake vs. nighttime respiration,
daytime vs. nighttime evapotranspiration). While conceptually similar
to other frequency-based methods (e.g., Fourier, wavelet), our proposed
method does not impose a specific shape function (e.g., sinusoidal wave,
mother wavelet) in constructing the composite time series. Thus, our
composite time series can capture irregular or asymmetric diel/seasonal
patterns (e.g., afternoon water stress (Vickers et al., 2012)) or abrupt
transitions (e.g., monsoon onset, Scott et al., 2009). Practically, this
climatological composite time series averaged out interannual vari-
ability, smoothed out the random noise around high-frequency sampling
error (Moncrieff et al., 1996), filled a portion of the data gaps in the
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original records (Falge et al., 2001), and reduced the computational time
of further clustering analyses (Aghabozorgi et al., 2015; Cheng and
Adepeju, 2014).

2.2. Time series analysis and hierarchical clustering

To quantify the similarities among the composite time series, we
computed the dynamic time warping (DTW) distances for each variable
among all available sites (see Figures S2-S5 for example). DTW measures
the distances between any two given time series, focusing on the
generalized shape of the curve while allowing moderate compression or
stretching, following Giorgino (2009):

D(x,y) = min (dy(x,y)) €))
where D(x,y) is the DTW minimum distance (d) between the time series
x and y of a given variable from two sites, given that DTW methods allow
for distortion in the time series. In other words, due to the warping
nature of DTW, where a time series can be stretched or compressed
while being evaluated against another time series, the DTW distance is
the difference between the x and y data with the least amount of
deformation applied to the time series. Given that the time series was
prepared with the same lengths and resolutions, the DTW distances
mainly reflect the difference in diel/seasonal amplitudes and phases.
The proxy R package was used to extract the DTW distances (Buchta,
2022). We interpreted the DTW distances as a measure of similarity
between two sites in the target variable’s climatological diel/seasonal
dynamics, e.g., any deviation in seasonal phases or differences in am-
plitudes. To allow comparison between variables, we normalized DTW
distances using the minimum and maximum DTW distances of each

variable across all site pairs:

Dy(x,y) —min (Dy(x,y))
max(DV(x,y)) - min(DV(x,y))

D;(x.y) = @
where v represents the variable, including NEE, H, LE, USTAR, NETRAD,
SWC, TA, and VPD.

We then adopted hierarchical clustering to construct the hierarchy of
site clusters (i.e., clustering trees, Fig. 1c) based on the sites’ DTW dis-
tances. Hierarchical clustering assumes all sites as a single cluster
initially and consecutively splits it into separate clusters and, ultimately,
the end nodes of each individual site (Aghabozorgi et al., 2015). The
radial length of a branch after a split indicates the similarity between the
split branches’ end nodes (sites), with shorter branch lengths indicating
more similarity. We chose this approach because it retains a relative idea
of general similarity between clusters/sites, i.e., the longer a radial
branch after a split indicates a relatively larger degree of difference or
divergence. To aid the interpretation, we trimmed the clustering trees to
the optimal number of clusters determined based on the performance of
six cluster validity indices (Arbelaitz et al., 2013), searching between 30
and 75 clusters (Supplementary Text S3). Unless specified, we focused
on the optimized clustering groups in further sections. Still, the un-
trimmed clustering trees were presented (e.g., Fig. 1c). For better pre-
sentation, clustering groups with fewer than five sites were not
color-coded separately in the clustering trees and maps. However, it is
worth noting that these small groups represented sites that were unique
and relatively different from others (e.g., groups 2-3 in Fig. 1c). The
analyses above were carried out for each of the eight target variables (i.
e., univariate) for all available sites (i.e., 215 (SWC) to 338 (USTAR))
and then for all flux variables combined (i.e., multivariate, 313 sites).



D.E. Reed et al.

Additionally, we ran similar univariate analyses for 186 sites with GPP
and RECO data (Table 1). The dtwclust and ape R packages were used in
the clustering analyses and tree generation mentioned above (Paradis
and Schliep, 2023; Sarda-Espinosa, 2023).

We further examined the dependency of site pairs’ DTW distances by
IGBP group, ecoregion, and spatial proximity. We compared the DTW
distances across sites within and across IGBP groups or ecoregions using
the analysis of variance (ANOVA) and Tukey post hoc tests (Sokal and
Rohlf, 1995). We also examined the dependency of site pairs’ DTW
distances on the sites’ spatial proximity using a moving average lowpass
filter. The above tests explored whether sites in the same IGBP groups,
ecoregions, or spatial proximity had lower DTW distances than those
across groups or far apart. Lastly, to provide a multivariate similarity,
we calculated the Harmonic Uniqueness Parameter (HUP) for each site
as the mean of the normalized DTW distances to all other sites:

HUP(x) = (Z% (ZfiDi (w))) @

where Ny and Ny denote all other sites and all target variables, i.e., NEE,
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LE, H, and USTAR, respectively (Table 1). In theory, HUP can range from
0 to 1, but in practice, most values fall between 0.15 and 0.35, with a
higher HUP value indicating a site’s relatively higher uniqueness.

3. Results
3.1. Site clustering

Environmental variables (e.g., TA, NETRAD) showed site clustering
mainly reflecting the expected climate gradients, primarily but not
exclusively evident along the latitudinal gradient (see Figs. 2a and S9a
for maps, Figures S11 and S15 for composite time series, and
Figures S12b and S16b for clustering trees). VPD also showed changes
with latitude, along with small clusters in separate geographic regions.
For example, there was a cluster of 17 sites mostly in Florida (light
purple, Figures S19-S20) and a cluster of 22 sites primarily from the
Northwestern Forested Mountains (dark purple). Several clusters
emerged for about 28 sites in the North American Deserts and Southern
Semi-Arid Highlands, featuring high spring VPD declining after the
summer monsoon (Groups 1-15, Figures S19-S21). For SWC, there was
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Fig. 2. Geographic locations of AmeriFlux sites clustered based on TA (a) and NEE time series (b). Color codes indicate the sites’ clustering groups. For simplicity, all
groups with fewer than five sites are shown in gray. See Figures S16a, S20a, S24a, S32a, S36a, S40a, S44a, and S48a for similar maps using the NETRAD, VPD, SWC,
H, LE, USTAR, GPP, and RECO time series and an interactive map at https://cartoscience.users.earthengine.app/view/flux-networks.
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no clear large-scale geographic or ecoregion-specific pattern
(Figure S24a), reflecting the cross-site heterogeneity (e.g., ecohydrol-
ogy, soil properties, local topography, measurement depth, etc.). In sum,
clustering based on environmental variables generally reflected the
sites’ climate and ecoregions, demonstrating the general robustness of
the clustering methods. Latin America had a sparse, relatively low site
density. Hence, sites from those regions were often clustered into small
groups.

The univariate clustering based on flux variables (i.e., NEE, LE, H,
USTAR) showed more uneven distributions in the clusters compared to
the environmental variables. Often, around 30-50 sites were grouped
into 20-40 small groups with only one or a few sites, while the rest were
grouped into 1-2 large groups (>100 sites) and a few intermediate-size
groups (15-70). To some extent, the uneven clustering reflected the
unevenly distributed nature of the AmeriFlux network, and thus, sites
from underrepresented IGBP groups (e.g., urban, open water), ecor-
egions (e.g., Hawaii, ecoregions in Latin America), geolocations (e.g.,
mountainous areas), or disturbance/management regimes (e.g., alfalfa
(periodic harvest), rice paddy (seasonal flooding)) had distinct diel-
seasonal dynamics in the fluxes and were clustered into unique, small
groups. The rest of the sites, while varying marginally or moderately
among each other, were grouped into a few large or intermediate clus-
ters. For example, NEE had one large cluster of 156 sites across multiple
ecoregions and IGBP groups (Group 11, Figs. 2b, S21, Tables S6-S7).
Group 15 (62 sites) was primarily deciduous broadleaf forests (41.9 %)
and grasslands (17.7 %) in the Eastern Temperate and Northern Forests.
Group 9 (28 sites) was nearly all croplands (85.7 %). In contrast, 32
groups contained only 1-3 sites, mostly from underrepresented IGBP
groups and ecoregions. About 186 out of the 313 sites with NEE had
partitioned GPP and RECO for our analyses. The GPP and RECO clus-
tering showed a larger proportion of sites within the network were
classified as unique amid a smaller number of sites within each group
(Figures S44 and S48). RECO has two groups with 14 % of sites, while
GPP has groups of 28 % and 12 % of sites. In general, GPP and RECO
showed a relatively even cluster distribution compared to using NEE.
Also, GPP and RECO showed more distinct annual mean fluxes among
groups than NEE (Figure S53).

For LE, ~67 % of the sites were clustered into two large groups of
114 and 110 sites across North America, except for the southeastern
region (Figure S32, Tables S6-S7). Around 50 sites, mostly from the
Eastern Temperate Forests and Great Plains, were clustered into 3
intermediate-size groups. For H, ~71 % of the sites were clustered into
two large groups of 121 and 119 sites across North America, except for
the southwestern region (Figure S36, Tables S6-S7). Eighteen sites,
mainly from the Northern American Deserts and Southern Semi-Arid
Highlands, were grouped together (dark purple, Figure S36), and 14
sites were grouped together largely from the Northwestern Forests
Mountains and Mediterranean California (blue, Figure S36). For USTAR,
~51 % of sites were clustered into one large group of 174 sites across
multiple ecoregions (Figure S40). The LE, H, and USTAR clusters
generally reflected the differences in the annual mean fluxes
(Figure S53).

The multivariate clustering based on all flux variables showed a
relatively even cluster distribution featuring multiple intermediate-size
groups (Figs. 3-4, Table §8-S9). The largest Group 59 (70 sites) spanned
multiple ecoregions and IGBP classifications (dark purple, Fig. 3). This
group is characterized by low annual mean LE, H, and NEE (dark purple,
Fig. 4). Group 60 (62 sites) included mostly grasslands (35.5 %) and
croplands (41.9 %) in the Eastern Temperate Forests and Great Plains,
featured by moderate LE, low H, and various NEE (light purple
Figs. 3-4). Group 55 (32 sites) was located in North American Deserts,
Mediterranean California, and Southern Semi-Arid Highlands, with high
H but low NEE and LE (light blue Figs. 3-4). Groups 29 and 31 (19 and
16 sites) were dominated by deciduous broadleaf and evergreen nee-
dleleaf forests across Eastern Temperate and Northern Forests, with high
USTAR and moderate to high NEE (orange and yellow, Figs. 3-4).
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Notably, all of the groups above had at least one NEON or AmeriFlux
Core site in each group (Fig. 3b), suggesting these long-term sites
generally represented the (current) major clusters of the network. It is
also worth mentioning that several known adjacent sites over similar
ecosystems (e.g., US-Hal/US-xHA, US-Bar/US-xBR, US-Kon/US-xKZ,
US-EML/US-xHE) were clustered into the same groups, demonstrating
the robustness of the site clustering. Last, 84 sites were clustered into 58
small groups (gray, Fig. 3). These sites were mainly from currently un-
derrepresented IGBP groups (e.g., urban, open water, snow/ice), ecor-
egions (e.g., Hawaii, and ecoregions in Latin America), geographical
features (e.g., mountain, floodplain), and disturbance/management re-
gimes (e.g., periodic harvest, wildfire, prescribed burning, forest plan-
tations, restored wetlands).

3.2. Site similarity

The connection between clustering results and climate is explored
using mean air temperature and precipitation at the site level (Fig. 4k
and S51). Through this lens, sites are more likely to be included in the
largest NEE cluster (Group 11) if they are drier, with annual precipita-
tion of <1000 mm, while sites more likely to be included in smaller,
more unique clusters have typically hotter and wetter climates
(Figure S54a). A similar clustering is seen in LE (Figure S54b) with a
threshold of 1000 mm precipitation and of <10 °C for TA, while there
were larger amounts of overlap between clusters in climate space for H
and USTAR (Figures S54c-S54d). When sites are clustered based on all
flux variables (NEE, LE, H, USTAR, Fig. 4k), there are large clusters in
the dry and cold (<1000 mm, and <10 °C) and also dry and hot (<1000
mm, and >10 °C) climate spaces, while small and unique clusters again
are more likely in hot and wet climates.

We further examined the normalized DTW distance—a measure of
similarity in the temporal dynamics between site pairs—across sites
within and among the selected ecoregions and IGBP groups (Figs. 5 and
S52). Environmental variables generally showed lower DTW distances
(i.e., similar) within the same ecoregions, except for NETRAD in
Northwestern Forested Mountains, VPD in North American Deserts and
Mediterranean California, and SWC in Eastern Temperate Forests and
Mediterranean California (Figure S55e-h). For IGBP groups, shrublands
and wetlands tended to have higher inter-site DTW distances than all
others (Figure S55a-d). It should be noted that SWC was not always
measured at wetland sites, particularly at the wetter/inundated loca-
tions, potentially biasing the current results. Flux variables generally
showed lower DTW distances within the same ecoregions and IGBP
groups (Fig. 5). However, several groups had high DTW distances closer
to or even higher than the cross-group DTW distances. For example, sites
in Mediterranean California showed much higher inter-site variability
for NEE, LE, and H than other groups, as did sites in Eastern Temperate
Forests for NEE and LE, Northern Forests for USTAR, and Northwestern
Forested Mountains for H and USTAR. For IGBP groups, croplands had
higher DTW distances for NEE and LE than the others. Wetlands had
higher DTW distances for LE, shrublands had higher DTW distances for
H, and evergreen needleleaf forests had higher DTW distances for
USTAR. In sum, while sites in the same IGBP groups and ecoregions
generally showed similar flux dynamics (lower DTW distances), the
above exceptions highlighted the inter-site variability, potentially as
high as that across groups, for certain ecoregions and IGBP groups.

When examining the site pairs’ similarity against the spatial dis-
tance, most sites showed high similarity in adjacent locations and
became distinct with an increased distance as expected (Figs. 6 and S46-
S52). Yet, the dependence of similarity on spatial distance differed by
variable and IGBP group, and in some cases, bimodal behavior was
apparent. One example of bimodal site-pair similarity is NEE for Eastern
Temperate Forests (Fig. 6 g), highlighting how most sites are similar
within that ecoregion, but certain site pairs show dissimilar NEE, even at
relatively close distances across the landscape. Another example of
difference among IGBP groups is the larger amount of variability in NEE
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Fig. 3. Site locations (a) and radial tree diagram (b) of AmeriFlux sites clustered using all flux time series (i.e., NEE, LE, H, USTAR). Color codes in both panels
indicate the sites’ clustering groups. For simplicity, all groups with fewer than five sites are in gray colors. Each end node in panel (b) represents an AmeriFlux site
specified by its Site ID, marked with asterisks (*) and plus signs (4) for the NEON and AmeriFlux Core sites. The radial distance at which a branch is split indicates the
similarity of the split branches’ end nodes (sites). For example, a split closer to the center (origin) suggests that the divided branches (and their end nodes) are very
dissimilar. See Figures S43-S44 for similar tree diagrams highlighted by ecoregion and IGBP classification.
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Fig. 4. Distribution of AmeriFlux sites by (a-j) annual mean fluxes and (k) mean air temperature and annual precipitation. Color codes denote clusters using all flux
variables in all panels, similar to Fig. 3. Figures b, d, e, g, h, and i are scatterplots between annual mean NEE, LE, H, and USTAR. Each dot represents an AmeriFlux
site. Figures a, c, f, and j show boxplots of annual mean fluxes by clusters. Boxes and whiskers showed each cluster’s interquartile ranges (IQR, 25th-75th percentiles)
+ 1.5 * IQR. Figure (k) uses the Climatic Research Unit (CRU) time series (TS) 4.05 gridded dataset from 1981 to 2020 (0.5 x 0.5°). For better presentation, the figure
scales were zoomed in to focus on the main groups. A few sites with extremely large/small NEE (US-Bi2, US-Inc, US-Ing, US-SuS, US-SuW), H (AR-TF1, AR-TF2, US-

BMM, US-ICs, US-xNW), and USTAR (US-GLE) were not shown.

in evergreen needleleaf forests (Fig. 6b) compared to deciduous forests
(Fig. 6d). In general, LE and NETRAD showed an apparent decrease in
similarity with distance (Figures S49 and S52), implying site pairs are
more likely to show divergent behavior for those variables across the
landscape. In contrast, USTAR, VPD, and SWC showed a weak rela-
tionship between the sites’ similarity and distance (Figures S58, S61-
S62), with a larger variability between sites at close spatial scales. Dif-
ferences between IGBP classifications exist, particularly for NEE in for-
ests and croplands.

The Harmonic Uniqueness Parameter revealed sites that were rela-
tively unique and distinct from others in the current network (Fig. 7). At
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the continental scale, sites in Hawaii and most ecoregions in Latin
America showed a relatively high HUP, reflecting their current under-
representation in the AmeriFlux network. However, at a finer scale,
several sites from specific IGBP groups, mountains, or management re-
gimes also revealed high HUP (>0.24). For example, around 13 moun-
tainous sites from the Northwestern Forested Mountains (e.g., US-CPKk,
US-GLE, US-MtB) and Mediterranean California (e.g., US-SO2, US-SO3)
showed their relative uniqueness. Urban (e.g., US-INc) and open water
(e.g., US-Pnp, US-Men) sites, with distinct flux dynamics, had high HUP.
Lastly, several managed forests from the Eastern Temperate Forests (e.
g., US-NC2, US-SP2, US-Cst) and croplands from Mediterranean



D.E. Reed et al.

Agricultural and Forest Meteorology 372 (2025) 110686

(Unique) 1 1 (a) NEE (b) LE (©H (d) USTAR
e
0.75 —
f f
¢ | € g a -
0.5 — d
b [
b
{ 2 i
d b e a
028 He T - ° ;A B éé& i ° f b
_ — ] — < ' 4 cd d
.n.—-h-i-.- = .S-_-A--.-A_*
(Similar) 0
v & X 0 X Q@ 5 v & £ 0 X Q@ 5 v £ L O X QLS LXK O QA
Ve 8EESTE Je8EEESY Joe8E8FY 68885
(Unique) 1 — (e) NEE (f) LE (99 H (h) USTAR
f
075 = b
f e 9 e
b
0.5 i Lo
$ e -
3 ¢ e a P D g o =t 4 a
0.25 ° — e c
2 a d b — -.--h = - . d de
= ] — e
-.-_-- --.-- = [ =2 = = =
(Similar) 0
YA ELE 79 F RIS L 70 F R ITL IO F LT EL O F
TESLGESE JESELEESTE JESsEESE 6§46 88¢

Fig. 5. The box plots of normalized dynamic time warping (DTW) distances for flux variables among selected IGBP groups (a-d) and ecoregions (e-h). Only groups
with sufficient samples (>20 sites) were included. Black dashes and circles indicated each group’s medians and means. Gray boxes and whiskers showed each group’s
interquartile ranges (IQR, 25th-75th percentiles) & 1.5 * IQR. Different annotated letters indicate significant differences among groups. Abbreviations: ALL: all site
pairs except those in the same group, ENF: evergreen needleleaf forest, DBF: deciduous broadleaf forest, CRO: cropland, GRA: grassland, SHB: open and closed
shrubland, WET: wetland, NTF: Northern Forests, NWF: Northwestern Forested Mountains, ETF: Eastern Temperate Forests, GPL: Great Plains, NAD: North American
Deserts, MCA: Mediterranean California. See Figure S55 for a similar figure for environmental variables.

California (e.g., US-Tw3 (alfalfa) and US-Twt (rice)) also showed high
HUP.

4. Discussion
4.1. Site similarity and dependency

In this work, we show sites across the AmeriFlux network are
generally similar to each other when compared to the same ecoregion or
IGBP type, as opposed to sites from other ecoregions or IGBP type.
However, in some cases, such as LE fluxes in wetlands and in the Med-
iterranean ecoregions, sites within those groups are more dissimilar
relative to each other than relative to a site from outside of that ecor-
egion or IGBP type, highlighting where some ecosystem classification
schemes could be potentially insufficient. When examining site simi-
larity as a function of spatial distance, we find that sites closer in
proximity to each other are generally more similar to each other, but
there is a perhaps surprisingly large amount of variation in the degree of
spatial similarity between ecoregion and IGBP type. As our approach
was solely based on the time series dynamics, without inputting the
sites’ characteristics, our results provided an independent and quanti-
tative way to evaluate and revisit commonly adopted site classifications,
such as IGBP groups and ecoregions.

One goal of flux networks is to provide sufficient, representative
information for the regions, continents, or globe, ultimately enabling the
upscaling of fluxes from individual sites’ footprints to the terrestrial
globe (Loescher et al., 2022). Focusing on a few ecoregions with abun-
dant sites, we found Northwestern Forested Mountain, Mediterranean
California, and Eastern Temperate Forests had substantial cross-site
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variability in flux dynamics (Figures S63, S64, S65, S68), even as high
as that across ecoregions. This large within-region variability indicates
the landscape complexity inherent within the ecoregion concept, and
ultimately, there may not be a one-size-fits-all for ecoregion classifica-
tion. Ecoregion classifications, such as those adopted in this study, were
often based on climate, land-surface forms, or potential natural vege-
tation. Similarly, many studies that evaluated observational network
representativeness were often based on driver variables of fluxes or site
characteristics (Hargrove et al., 2003; Schimel et al., 2007; Sundar-
eshwar et al., 2007). Our results suggested that those approaches’ as-
sumptions may need to be revisited or further refined, as the dynamics in
the drivers may not be sufficient to reflect the dynamics in fluxes.
Often, upscaling research is based on quantifying the flux sensitivity
to drivers within specific functional classifications such as plant func-
tional type. The implicit assumption of this approach is that a single site
provides sufficient detail to capture target processes and with adequate
abstraction to allow upscaling and extrapolation to regions or the globe
(Pacala and Kinzig, 2002). The functional classification assumes that the
flux towers’ footprints can represent other unmeasured areas if they
share similar plant functional types. Clearly, models trained or param-
eterized using data at the flux towers can be applied and upscaled to the
terrestrial globe (Jung et al., 2020; Zheng et al., 2020). Here, we do not
examine the relationship between fluxes and drivers across the land-
scape but instead quantify how time series within the same functional
classifications vary. Our results suggested that the IGBP groups—a
commonly adopted classification—may be insufficient to capture the
ecosystems’ flux dynamics (Page et al., 2024) and justified the need to
seek other flux-based classifications, such as ecosystem functional types
(Villarreal et al., 2018, 2019). Particularly, wetlands, shrublands,
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Fig. 7. The AmeriFlux sites highlighted by the sites’ Harmonic Uniqueness Parameter (HUP). HUP represents the multivariate similarity using all flux time series
(NEE, LE, H, USTAR). A higher HUP value indicates a site’s relatively higher uniqueness.

croplands, and evergreen needleleaf forests showed high within-group
variability in specific fluxes, highlighting the importance of other un-
accounted functional properties such as plant species composition, stand
age, salinity, hydrological regimes, and management in driving the
observed cross-site flux variability (Hemes et al., 2019; Paul-Limoges
et al., 2015; Qu et al., 2023; Vickers et al., 2012; Xiao et al., 2014; Xie
et al., 2021).

Upscaling is challenging, particularly when extrapolating fine-scale
point observations to a larger region (Newman et al., 2019). Flux
towers typically sample an area of around 0.001-10 km? (Chu et al.,
2021), and the measured fluxes are upscaled using a multitude of
models, remote sensing products, and climate data sets to a regional or
continental scale, i.e., 10°-10° km? (Jung et al., 2020; Zheng et al.,
2020). Even in adjacent areas, the validation of flux upscaling beyond
the flux tower footprints is often limited (Hollinger et al., 2004; Oren
et al., 2006; Post et al., 2015; Schmidt et al., 2012). We show that the
degree to which processes change spatially is ecosystem dependent. We
found that sites with the same IGBP type likely had similar temporal
characteristics in fluxes when spatially proximal. This finding highlights
the potential validity of upscaling that extrapolates single-point obser-
vations to some distance across the landscape, although management or
disturbance history at sites should be considered. The recent findings of
Page et al. (2024) suggest that when using site climate to predict flux
behavior, plant functional types provide limited information, but com-
bined with the results presented here, there could be a spatial distance
across the landscape within which scaling would be valid for a given
ecosystem type. Future research should incorporate ancillary datasets
such as remote sensing estimates of ecosystem function to help bridge
the gap between the footprint scale (Chu et al. 2021) and the regional
scale, given that the results here begin to quantify spatial similarity, but
only between discrete flux footprints. Connecting these clustering re-
sults to landscape-level ecosystem functioning data would help reveal
the usefulness of scaling assumptions embedded in IGBP or similar
ecosystem classification schemes.

4.2. Site clustering, interpretation, and implications

We advocate that our clustering of site data can serve as an alter-
native guide to reorganizing and interpreting the AmeriFlux network.
This time series clustering approach allows us to quantitatively organize
the sites’ relationships, identify those unique to the current network,
and group sites with similar temporal dynamics. For example, one can

interpret our multivariate clustering as a quantitative measure of sites’
similarity in their flux dynamics, i.e., a flux-based classification of
AmeriFlux sites. The information can inform future syntheses, upscaling
studies, and model-data benchmarking on site selection/grouping,
balancing between those unique sites and those sharing similar temporal
dynamics with others.

One can use our clustering to identify sites with similar/distinct flux
dynamics within the same IGBP groups, ecoregions, or georegions, i.e.,
test the hypotheses of (dis)similarity of flux dynamics. Multiple envi-
ronmental variables (i.e., NETRAD, TA, VPD) showed an expected
agreement between their clustering and ecoregions. The findings justi-
fied a typical research design of utilizing multiple sites within the same
ecoregion, expecting that climate and weather conditions would be
similar. Many AmeriFlux sites were established ad hoc as site clus-
ters—multiple co-located sites across gradients of land cover/land use,
chronosequence stages, management, disturbance, edaphic and hydro-
logical regimes (Chen et al., 2004; Biederman et al., 2018; Forsythe
et al., 2020; Goulden et al., 2006; Knox et al., 2014; Law et al., 2001;
Verma et al., 2005; Vickers et al., 2012). Furthermore, potential syn-
thesis opportunities could arise by strategically pairing sites established
independently but in the same ecoregions (Chu et al., 2023; Stoy et al.,
2023), i.e., post hoc site clusters (Bormann, 2012; Butterworth et al.,
2021; Chen et al., 2018; Zhang et al., 2020). In fact, several IGBP groups
(e.g., evergreen needleleaf forest (76 sites), grassland (57), cropland
(51)) and ecoregions (e.g., Eastern Temperate Forests (100), Great
Plains (48), Northern Forests (40); Figures S63-S68) had relatively
abundant sites, now allowing one to examine their (dis)similarity in flux
dynamics and the underlying processes that drive cross-site variation
within these groups.

Lastly, the current clusters of site data highlight what would be
defined as a typical flux site across the AmeriFlux network and unique
and underrepresented sites. Flux-based clustering generally showed an
uneven distribution compared to the environmental variables, featuring
a few intermediate to large groups and many unique, small groups of
sites. Given how clustering algorithms function, with unique sites
defining the edges of the clustering distribution, sites show relatively
more similar behavior in the center. Hence, the flux variables of NEE, H,
and LE show a small number of large groups, and within these large
groups, there are site-to-site differences. Still, these differences are small
compared to the sites at the edges of the clustering distribution. While
large clusters exist, we also show the tree structure for each variable to
show subgroup dynamics. The contrast among cluster sizes highlighted
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the significant ecological modulation by the ecosystems on the ex-
changes of carbon, water, and energy with the atmosphere (Stoy et al.,
2009).

This work also explores the unique and underrepresented sites in the
AmeriFlux network, motivating the establishment or incorporation of
new/unregistered sites from those groups. First, many unique sites were
from currently under-sampled IGBP groups (e.g., urban (US-INc), open
water (US-Men, US-Pnp)) and ecoregions (e.g., Marine West Coast For-
ests, Hudson Plains, Hawaii, and ecoregions in Latin America). One
factor contributing to under-sampling here is similar to the mid-domain
effect, where geographic patterns are influenced by physiographical
boundaries such as mountain ranges or land-sea interfaces, causing a
high degree of overlap of species ranges in the center of the shared
geographic domain and lower species richness (and hence a unique
assemblage of species) near the boundaries (Colwell and Lees, 2000).
Here, we see sites closer to spatial boundaries and, therefore, further
isolated, having a higher degree of uniqueness, e.g., based on HUP, eight
out of the eighteen most unique sites are located in Hawaii and Latin
America (US-SuW, US-SuS, CR-Fsc, BR-Sa3, BR-Npw, BR-Sal, PR-XLA,
and PR-xLA). Our results provided a quantitative measure of these sites’
uniqueness in flux dynamics to the rest of the network, reiterating the
importance of recruiting sites from those groups to increase the net-
work’s representativeness (Villarreal and Vargas, 2021). Second, several
unique sites were known for geographical features (e.g., mountain,
floodplain), disturbances (e.g., wildfire, insect outbreak), or manage-
ment regimes (e.g., periodic harvest, prescribed burning, forest planta-
tion, restored wetlands). For example, several mountainous sites in the
Northwestern Forested Mountains (e.g., US-GLE, US-CPk, US-NRI,
US-NR3, US-Vcp, US-Vem, US-xRM, Figure S67) were clustered into
small, separated groups. Several restored wetlands (US-Myb, US-Tw1,
US-Tw4), croplands (US-Twt (rice), US-Tw3 (alfalfa), US-Bi2 (corn),
and a pasture (US-Snd) co-located within a ~10-km radius in California
were also separated into different groups (Figure S68). These examples
highlight the strong influence of topography, land cover/use, and
management in driving distinct flux dynamics (Chen et al., 2004; Duman
et al., 2020; Flerchinger et al., 2019; Goulden et al., 2012; Hemes et al.,
2019; Xie et al., 2021), which may not be captured by the IGBP or
ecoregion groups alone.

4.3. Justifications and limitations

We advise the readers to interpret our clustering in the context of the
target variables, scales, features (e.g., periods and amplitudes), and
underlying processes that drove the cross-site variation. Multiple envi-
ronmental variables (i.e., NETRAD, TA, VPD) generally agree between
the clustering and ecoregions. Also, several known co-located sites (e.g.,
US-Hal/US-xHA, US-Bar/US-xBR, US-Kon/US-xKZ, US-EML/US-xHE,
US-xBN/US-Prr) with similar underlying ecosystems were clustered into
the same groups in multivariate flux clustering. Both results suggest the
robustness of our approach. We discuss the potential limitations of our
clustering analyses in the following paragraphs.

First, one issue to contend with now and into the future is the
Modifiable Temporal Unit Problem (MTUP) (Cheng and Adepeju, 2014;
Coltekin et al., 2011). Shape-based time series clustering will depend
upon the attribute extraction adopted by the analyses. We strategically
focused on the diel and seasonal scales, which typically dominate the
temporal dynamics of fluxes across sites (Chu et al., 2023; Stoy et al.,
2009). The flux dynamics at these two scales were mainly driven by
dynamics in environmental conditions (e.g., radiation, temperature,
VPD), vegetation physiology (e.g., assimilation, metabolism, water use),
and vegetation phenology (Baldocchi, Falge, and Wilson, 2001; Stoy
et al., 2005). Our clustering of sites generally reflected the influences of
these abiotic and biotic processes. Admittedly, the aggregation process
smoothed out the temporal information (and relevant processes) at
other scales, such as the hourly (e.g., rain pulse), weekly (e.g., synoptic
weather), or interannual scales (e.g., succession, disturbance, climate
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change). However, information such as management practices is
apparent in the composite time series if the management actions were
performed on roughly the same calendar dates each year. For example,
US-Bil and US-Tw3 are alfalfa fields with regular mowing during the
growing season that clearly impacts the flux dynamics. If one focuses on
aggregating at other scales, we anticipate that the clustering results may
change, shifting weight between the temporal processes that guide
clustering. For example, most previous studies focused solely on sea-
sonal dynamics, which typically highlight phase shifts in growing sea-
sons (e.g., peak, duration) across ecosystem types (Falge et al., 2002;
Wilson et al., 2003; Yang and Noormets, 2021) and focused more on the
peak flux magnitudes and durations of growing seasons and less on the
amplitudes of growing/non-growing seasons and daytime/nighttime.
Lastly, the site clusters may vary from using one flux variable to another,
highlighting the importance of considering multifaceted ecosystem re-
sponses. Potentially, multivariate clustering provided a more compre-
hensive view of the sites’ similarities and relationships.

Previous clustering work has often focused on climate and environ-
mental data, but here we cluster sites based on the direct flux observa-
tions themselves. One of the pioneer studies by Hargrove et al. (2003)
used climatic, physiographic, and edaphic factors to delineate ecor-
egions, but suggested future work to incorporate and weight ecoregions
by their carbon flux magnitude. A similar analysis by Kumar et al.
(2023) for the LTAR Network found similar spatial representativeness
across the conterminous United States, where larger regions have more
generalized environments, and smaller regions are more specialized,
while they noted that management practices were not considered. With
this work focused on clustering ecosystem flux observations and not on
clustering climate drivers of fluxes, we cannot estimate spatial locations
of the network that are poorly represented, as previous network clus-
tering work has done (Villarreal and Vargas, 2021). Instead, we high-
light unique sites within the current network, and the results presented
here should be taken as a parallel method to understand network
representation.

Future research should explore the site similarity and clustering
when large-scale standardized GPP and RECO become available. We
strategically chose to focus on NEE rather than GPP and RECO for the
following reasons. First, NEE is directly measured, while GPP and RECO
are derived from NEE based on various models and assumptions. The
flux partitioning process introduced additional model assumptions and
potential biases (Vickers et al. 2009; Baldocchi et al. 2015). While varied
in assumptions and implementations, flux partitioning generally in-
volves models for RECO and/or GPP based on NEE data. Studies based
on independent observations, such as stable C isotopes (Lee et al., 2020)
and solar-induced chlorophyll fluorescence (Kira et al., 2021), suggested
a potential overestimate of RECO from the common partitioning
methods. Second, current partitioning algorithms can be problematic in
nontypical cases (e.g., tropics, arctics, wetlands, open water). Parti-
tioning NEE at these sites remains challenging because many theoretical
or methodological assumptions are unlikely to be valid. Third, many
efforts have attempted to generate a standardized, multi-approach
ensemble of partitioned products across the networks (e.g., FLUX-
NET2015, Pastorello et al., 2020). At the time of writing, the FLUXNET
Data System Initiative and the AmeriFlux ONEFlux processing project
have about 56 % of our studied sites have standardized GPP and RECO
available, limiting our analyses to only a subset of AmeriFlux sites.
While additional sites are added frequently, based on the current site
availability, GPP and RECO yield more evenly distributed clusters and
distinct annual fluxes among groups. Future investigations using a larger
number of sites with partitioned fluxes and different partitioning
methodologies are worth approaching.

Our clustering analyses were also constrained by the current site
locations and their distribution within the network, reflecting the un-
evenly partitioned clusters in flux variables. Several IGBP groups (e.g.,
snow/ice, water, urban, barren land, deciduous needleleaf forest) and
ecoregions (e.g., Arctic Cordillera, Hudson Plains, Marine West Coast
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Forests, Temperate Sierras, and most ecoregions in Latin America) had
no or only a few flux sites currently in AmeriFlux (Perez-Quezada et al.,
2023). The few available sites from these groups were often clustered
into unique, small groups distinct from other clusters (i.e., large DTW
distance). On the other hand, several IGBP groups (e.g., evergreen
needleleaf forest, grassland, cropland) and ecoregions (e.g., Eastern
Temperate Forests, Great Plains, Northern Forests) had relatively
abundant sites, further revealing finer-granular (i.e., low/moderate
DTW distance) sub-clusters within each group (Figures S63-S65). The
contrast between the small and large groups implied that more undis-
covered clusters in undersampled groups/ecoregions may emerge as the
AmeriFlux network grows and expands.

5. Conclusion

We used an empirically based, harmonic approach to cluster the
AmeriFlux sites based on their time series features independent from the
commonly adopted IGBP classifications or ecoregions. Such an approach
quantified sites’ (dis)similarity in diel/seasonal amplitudes and phases
of fluxes, reflecting the effects of climate, plant phenology, and
ecophysiological potentials. While most environmental variables
(NETRAD, TA, and VPD) showed an evident latitudinal/regional clus-
tering as expected, flux variables revealed an uneven clustering with
many small, unique groups and a few large to intermediate groups. The
contrast highlighted the strong biological modulation of ecosystem COs,
water, and energy fluxes, and this modulation varied spatially across the
landscape. Many unique sites were from currently under-sampled IGBP
types and ecoregions, with very distinct flux dynamics compared to the
rest of the network. Yet, at a finer-granular level, local topography,
disturbance, management, edaphic, and hydrological regimes further
drove the flux dynamics difference within the same IGBP groups and
ecoregions. We suggest that our clustering can be used to better interpret
the AmeriFlux network, thereby identifying sites with similar/distinct
flux dynamics for future cross-site syntheses. The information generated
from the clusters can also inform future upscaling studies and model-
data benchmarking on site selection and grouping. Finally, our clus-
tering analysis highlighted unique and underrepresented sites in the
AmeriFlux network, motivating the establishment or incorporation of
new/unregistered sites from underrepresented groups, such as IGBP
types of snow/ice, open water, urban, barren land, and deciduous nee-
dleleaf forest, and ecoregions of Arctic Cordillera, Hudson Plains, Ma-
rine West Coast Forests, Temperate Sierras, and Latin America.

Data statement

This study utilized publicly accessible data from the AmeriFlux
Network, where individual PIs established research sites and shared
their data with the network. Site-level funding and collaboration were
acknowledged in Supplement Table S2. This study followed the Amer-
iFlux data use policy and contacted all sites’ PIs during the manuscript
preparation phase. All site-level personnel involved with data collection
were invited to participate and contribute to this project.

All AmeriFlux data discussed in this paper are publicly available at
AmeriFlux (https://ameriflux.lbl.gov/), accessed in September 2023.
Ecoregion maps are accessed through the Ecological Regions website
(https://www.epa.gov/eco-research/ecoregions). All studied sites’
general information, clustering, and Harmonic Uniqueness Parameter
results are provided in the Supporting Information (Table S1) of Reed
et al. (2024). The R codes for data processing and clustering are avail-
able at https://github.com/chuhousen/flux_timeseries_cluster (DOIL
https://doi.org/10.5281/zenodo.12585997). The accompanying inter-
active web map showing the site clusters and time series is available at
https://cartoscience.users.earthengine.app/view/flux-networks.
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