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ABSTRACT 
Wetlands are an integral part of the Canadian landscape, providing crucial ecohydrological serv
ices with globally significant benefits. Over the past 75 years, Canadian scientists have emerged 
as international leaders in wetland hydrological research, contributing to a better understanding 
of wetland form and function. Early Canadian research was instrumental in the development of 
a classification scheme that provided a foundation for later investigations into vadose zone 
processes, solute transport, evapotranspiration, ground-ice dynamics, biogeochemical cycling, 
and modelling. This work has coalesced into a better understanding of the factors that contrib
ute to wetland presence and persistence on the landscape, and the internal processes that 
result in their unique functions of carbon sequestration, water storage, flood mitigation, water 
quality enhancement, and wildlife habitat. In Canada and across the world, wetlands are threat
ened at a range of scales and intensities by disturbances like climate change, resource extrac
tion, wildfire, altered land use, and contamination. In response, Canadian researchers have 
become global leaders in characterizing the impacts of disturbance on wetland function and 
been at the forefront of innovative restoration and reclamation techniques. As the value of wet
landisre increasingly acknowledged by stakeholders and decision-makers, the need for evidence- 
based wetland research will only continue to grow. Canadian scientists are well-positioned to 
lead wetland hydrology into the next 75 years.
Les milieux humides font partie int�egrante du paysage canadien, offrant des services 
�ecohydrologiques essentiels avec des avantages d’importance mondiale. Au cours des 75 
derni�eres ann�ees, les chercheurs canadiens se sont impos�es comme des leaders internationaux 
dans la recherche hydrologique sur les milieux humides, contribuant �a une meilleure 
compr�ehension de leur forme et de leur fonction. Les premi�eres recherches canadiennes ont 
jou�e un rôle cl�e dans l’�elaboration d’un syst�eme de classification qui a servi de fondement �a des 
�etudes ult�erieures sur les processus de la zone non satur�ee, le transport des solut�es, 
l’�evapotranspiration, la dynamique de la glace du sol, le cycle biog�eochimique et la mod�elisa
tion. Ces travaux ont men�e �a une meilleure compr�ehension des facteurs qui contribuent �a la 
pr�esence et �a la durabilit�e des milieux humides dans le paysage, les processus internes qui don
nent lieu �a leurs fonctions uniques de s�equestration du carbone, de stockage de l’eau, de miti
gation des inondations, d’am�elioration de la qualit�e de l’eau, et d’habitats fauniques. Au Canada 
et partout dans le monde, les milieux humides sont menac�es �a diverses �echelles et intensit�es 
par des perturbations telles que le changement climatique, l’extraction de ressources, les feux 
de forêt, l’utilisation des terres modifi�ee et la contamination. En r�eponse, les chercheurs cana
diens sont devenus des leaders mondiaux dans la caract�erisation des impacts des perturbations 
sur la fonction des milieux humides et ont �et�e �a l’avant-garde de techniques innovantes de res
tauration et de remise en �etat. �A mesure que la valeur des milieux humides est de plus en plus 
reconnue par les parties prenantes et les d�ecideurs, le besoin de recherche sur les milieux 
humides bas�ee sur des preuves ne fera que crôıtre. Les chercheurs canadiens sont bien position
n�es pour continuer �a diriger la recherche en hydrologie des milieux humides au cours des 75 
prochaines ann�ees.

ARTICLE HISTORY 
Received 8 July 2023 
Accepted 6 October 2023 

KEYWORDS 
Wetland; peatland; 
hydrology; vadose zone; 
solute transport; 
biogeochemistry; ground- 
ice; restoration; reclamation; 
modelling   

Introduction

Recent estimates suggest Canada hosts nearly 20% of 
the world’s wetlands (Fluet-Chouinard et al. 2023). 

Wetlands comprise 14% of Canada’s land area, with 
90% of those wetlands being peatlands (NWWG 1997). 
Globally, peatlands store more carbon than all the 
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world’s forests combined, and Canada’s peatlands 
account for the largest proportion of that carbon stock 
(UNEP 2022). Wetlands provide crucial ecosystem 
services, including flood risk mitigation (Pattison- 
Williams et al. 2018), supporting biodiversity (e.g. 
Vickruck et al. 2019), wildlife habitat (Markle et al. 
2020,), and water quality improvement via nutrient 
retention (Cheng and Basu 2017). In this manuscript, 
we highlight Canadian research in wetland hydrology 
over the past 75 years with a focus on research con
ducted in Canada by Canadian researchers. From the 
mid-1980s onward, the exponential growth in the num
ber of Canadian publications on wetland hydrology has 
provided detailed information on all aspects of hydrol
ogy and are too numerous for us to provide a compre
hensive literature review. Rather, we cite examples of 
Canadian research that in the opinion of the authors 
pivotally illustrates the Canadian contribution to 
understanding the form and function of wetlands glo
bally. While we include important works by non- 
Canadians collaborating with Canadians in Canada, we 
acknowledge there is relevant international wetland 
hydrology not presented in this manuscript.

The manuscript is organized into two sections: A) a 
review of landscape processes that give rise to the range 
of common wetland forms and how they reflect the 
hydrogeomorphic setting that controls their location, 
water stores and exchanges, and ultimately their 

ecology; and B) a review of specific hydrological themes 
relevant to wetlands in Canada and elsewhere, including 
i) near-surface water exchanges; ii) the role of ground 
ice; iii) contamination and solute transport; iv) hydro
logical aspects of biogeochemistry; v) disturbances and 
restoration/reclamation; vi) modelling approaches to 
wetland hydrology; and vii) Indigenous knowledge. 
Given that Canadian wetlands are predominantly peat
lands, they have been the focus of most Canadian 
research, and this is reflected in this manuscript.

In Canada, wetlands are classified based primarily 
on hydrology (NWWG 1997) following the founda
tional work of Zoltai and Vitt (1995), who related wet
land class and form to the strength and variability of 
water flow and its role as a vector for dissolved and 
particulate chemical constituents (Figure 1). According 
to the Canadian Wetland Classification System 
(NWWG 1997), Canadian wetlands include marshes, 
shallow water wetlands, mineral swamps, and peat- 
dominated wetlands including bogs, fens and (peat) 
swamps. The details of their form and function are 
explained through Canadian research, in Section A of 
this manuscript. While there is a dearth of published 
research focusing on Canadian wetland hydrology prior 
to 1970, Meyboom (1966, 1967) wrote seminal papers 
on groundwater relations in Prairie wetlands. There 
was also earlier interest in Canadian peatlands, with 
MacFarlane (1959) indicating that systematic research 

Figure 1. Bog, fen, marsh and swamp wetland classes in relation to hydrological, chemical and biotic gradients (adapted from 
Zoltai and Vitt 1995).
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on ‘muskeg’ in Canada began about 1945, focusing 
almost entirely on engineering implications of peat- 
based materials and soil mechanics, in recognition of 
its high water content and thus high compressibility. 
Radforth (1965) noted environmental influences on 
peatland structure and development, including drainage 
patterns and water table, but without a comprehensive 
evaluation of hydrology. Sj€ors (1963) provided a 
detailed description of peatland forms and character in 
the Hudson Bay Lowlands, from which he inferred 
aspects of their hydrological behaviour. Wetland 
hydrology research in Canada began more earnestly in 
the 1970s (e.g. Dai et al. 1974; Dai and Sparling 1973; 
Whiteley 1979; Woo 1979; ; 1981), and on peatlands in 
the early 1980s (e.g. Fitzgibbon 1982; Munro 1984). 
This emerging interest in part reflects the recognition 
of impaired wetland function caused by drainage 
(Whiteley 1979). As previously noted, from the mid- 
1980s onward, there has been an exponential increase 
in wetland research, indicating the growing awareness 
of the key ecosystem services they provide (Pattison- 
Williams et al. 2018; Schindler and Lee 2010). 
Understanding the processes that sustain wetland func
tion are key to predicting or managing their function 
in the face of climate change, resource extraction, con
tamination and remediation. The Canadian contribu
tion to this understanding is highlighted in Section B, 
below.

A) wetland characterization in Canada: a 
hydrological basis

It is essential that wetland scientists have a common 
framework and terminology to refer to ecosystems 
that can differ so extensively in form and function. 
Globally, there are many different approaches to wet
land classification. Early approaches were based on 
botanical character, but later tended to be guided by 
landscape position, as in the Cowardin systems used 
by the US Fish and Wildlife Service, or by hydrogeo
morphic setting, water source, and water dynamics, as 
developed for the US Army Corps of Engineers (M. 
Brinson). Others still allowed for the distinct regional 
character. A weakness of this approach to classifica
tion is that wetlands that are fundamentally similar in 
form and function could appear in many different 
landscape positions, have similar water sources, and 
even exhibit similar water dynamics. The Canadian 
system overcomes this by identifying wetland classes 
based on their hydrological function, then on their 
form (e.g. surface morphology or pattern), and type 
(physiognomic characteristics of the vegetation 

communities) (NWWG 1997). Consequently, all wet
land scientists in Canada inherently understand the 
genetic origin and basic function of a particular wet
land class, of which there are five, namely bog, fen, 
swamp, marsh, and shallow water. It is this designa
tion of hydrology as the foundation for the rest of the 
framework that is one of the crucial innovations, and 
distinguishing features of the Canadian system of wet
land classification. This is reflected in Zoltai and 
Vitt’s (1995) graphical model (Figure 1) that illus
trates how wetland classes relate to water level fluctu
ation and strength of water flow, which also drive 
nutrient availability, system productivity and organic 
matter decomposition rates. The ordination of wet
lands within Zoltai and Vitt’s (1995) framework also 
reflects landscape features and climate, thus to some 
extent there is a regional bias to the distribution of 
Canadian wetland classes (Halsey et al. 1997), as will 
become evident in the following characterization of 
Canadian wetland classes. Despite decades of scientific 
advancement in wetland hydrology, the Canadian 
Wetland Classification System has endured and 
remains a relevant and valuable tool for wetland 
hydrologists. In this first section, we highlight the 
hydrological character of wetland classes, as defined 
in Canada, using citations of relevant research per
formed in Canada.

Mineral wetlands: marsh and shallow water
In this manuscript, we refer to non-peatland wetlands 
as mineral wetlands, which include marshes, shallow 
water, and some swamp wetlands. Discussion of the 
latter is included in the review of peatland research. 
In Canada, marshes are defined as wetlands with shal
low water that fluctuates daily, seasonally or annually, 
receiving water from surface runoff, stream inflow, 
precipitation, storm surges, groundwater discharge, or 
tidal action, often with marked water table drawdown 
that exposes sediments (NWWG 1997). Shallow water 
wetlands are transitional between terrestrial wetlands 
that are saturated or seasonally wet, and permanent 
deep water bodies (NWWG 1997). In the Canadian 
wetland classification system, marshes and shallow 
water wetlands are wetlands with or without emergent 
vegetation, respectively, and generally without the 
accumulation of peat. They are the least common of 
wetland types in Canada, but occur extensively in the 
Hudson Plains coastal zone, and have an important 
presence in the Atlantic and Maritime regions, and to 
a lesser extent in the Temperate and Prairie zones 
(Mahdianpari et al. 2020), although it is the most 
common wetland type in the Prairies (Halsey et al. 
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1997). These shallow-water wetlands may be depres
sion, lacustrine or estuarine wetlands. In Western 
Canada, these are most commonly represented by 
Prairie slough wetlands, also referred to as ‘pothole 
wetlands’ especially in the Great Plains region, USA. 
Their importance in Canada is reflected in the 
Canadian contribution to the International 
Hydrological Decade (1965–1974), when 125 sloughs 
were monitored for water level, adjacent water table 
elevation, and meteorology between 1964–1975. 
Meyboom (1966) identified seasonal inversions of the 
water table, being convex in spring resulting in verti
cal and lateral recharge, drawdown in summer caused 
by evapotranspiration from the surrounding ring of 
phreatophytic vegetation, with a concave water table 
persisting in winter. These were initially described as 
regionally important for ‘depression-focused recharge’ 
but van der Kamp and Hayashi (1998) found recharge 
to the regional aquifer to be small, albeit locally 
important. However, Bam et al. (2020) note ephem
eral systems (i.e. that dry out seasonally) have a more 
important recharge function than perennially flooded 
sloughs. Salt leaching that occurs beneath most sys
tems affirms the concept of depression-focused 
recharge (Berthold et al. 2004; Parsons et al. 2004). 
The primary water loss from these systems is evapo
transpiration (Woo and Rowsell 1993) from both the 
open water and fringing non-flooded wetland ring 
that expands and contracts inter- and intra-annually. 
Water table drawdown is caused primarily by evapo
transpiration in these fringing wetlands, which draws 
water from the pond (Hayashi et al. 1998). Millar 
(1971) found that water loss varied directly with the 
ratio of shoreline length to slough area. Price (1993) 
quantified the probability of drying similarly, 
although used slough volume instead of area, and 
accounted for specific Prairie climatic regions. For 
example, only sloughs from the climatically drier 
southern Prairie region were dry >50% of the time, 
having a shoreline to volume ratio <0.4 m m−3. 
While many sloughs have an isolated hydrological 
regime, water loss can include fill-and-spill generated 
spring runoff (Shaw et al. 2012), although it is typic
ally a small component of the water budget (van der 
Kamp and Hayashi 2009). Ameli and Creed’s (2017) 
modelling suggested that even distal wetlands contrib
ute to water flow and quality in the North 
Saskatchewan River, however, surface water connect
ivity is more common from proximal ones. Yet, Ali 
et al. (2017) showed groundwater connectivity to 
Prairie rivers is primarily through deep groundwater.

Land conversion to agriculture profoundly affected 
the distribution, persistence and function of Prairie 
sloughs. Snowmelt is the predominant water source 
for sloughs (Woo and Rowsell 1993), enhanced by 
low frozen-ground infiltration rates that promote sur
face runoff on adjacent slopes (Hayashi et al. 2003). 
However, agricultural practices replace natural Prairie 
grasses that trap snow with crop-stubble that is less 
effective at trapping snow, resulting in snow accumu
lating directly in these wetland depressions (van der 
Kamp et al. 2003). Replacing cultivated uplands with 
uncultivated brome grass results in small sloughs dry
ing out (van der Kamp et al. 1999); this condition 
may be more representative of the pre-agricultural 
landscape. Zhang et al. (2021) predict that future 
summers in the Prairie Pothole Region will have 
reduced precipitation and drier soils in the east but 
little change in the west. Furthermore, they predict 
shorter winters and thus less snow, and consequently 
a longer recharge season with lower recharge rates. 
This suggests Prairie sloughs, especially in the eastern 
part of the region, will be more likely to desiccate. 
Future function will also depend on restoration of 
Prairie wetlands, 70% of which have been drained 
since settlement (DUC, 2009). In a synthesis of litera
ture on wetland drainage in the Prairies, Baulch et al. 
(2021) conclude that drainage increases annual dis
charge volumes, can increase runoff magnitudes and 
frequencies, increases nutrient export, reduces 
groundwater recharge, negatively affects biodiversity 
and habitat, and alters carbon and greenhouse gas 
exchange.

Coastal salt-water marshes in Canada include those 
of the eastern and western seaboards and the 
Subarctic along James and Hudson Bay. Coastal salt- 
water wetland water exchanges are mostly driven by 
tides, although Byers and Chmura (2014) noted that 
subsurface hydrology in a Bay of Fundy marsh was 
less a function of (extreme) tidal range than of soil 
permeability, marsh geomorphology, precipitation, 
and duration between inundation events. Tidal inun
dation of James Bay coastal wetlands in Ontario has a 
diminishing influence on salinity towards the south, 
and soil salinity reflects the maximum tidal crest 
(Price et al. 1992). The coastline rises isostatically at 
about 1.4–2 m per century (Pendea et al. 2010), result
ing in a series of parallel raised beach ridges that trap 
water behind them, forming marshes (Price and Woo 
1988a) that direct water laterally into drainage chan
nels (Woo and diCenzo 1989). Persistent salinity in 
these marshes is a result of upward diffusion of relict 
salt (Price and Woo 1988b) from Tyrrell Sea 
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sediments (Martini 1981). Further inland (a proxy for 
time since shoreline emerges due to isostasy) peat 
forms, raising the local surface elevation, restoring 
water-flow towards the coast and causing local 
groundwater recharge (Price and Woo 1990).

Coastal freshwater marshes also occur extensively 
around the Laurentian (Lakes Ontario, Erie, Huron 
and Michigan) and Manitoba (Lakes Winnipeg, 
Manitoba, and Winnipegosis) Great Lakes (Watchorn 
et al. 2012). The Great Lakes Coastal Wetlands 
Consortium (Albert et al. 2005) classify coastal wet
lands as primarily open coast wetlands, drowned 
river-mouth wetlands, and barrier-protected wetlands. 
The open coast and drowned river-mouth wetlands 
have a hydrological regime dominated by lake-level 
that is characterized by seasonally high water in late 
spring, periodic seiche (wind-driven) water level 
changes, and long-term water level cycles separated 
by intervals of eight years or more (Cohn & J. E. 
Robinson et al. 1975). For open and drowned river- 
mouth wetlands, water levels are highly responsive to 
lake levels during the spring maxima, but diminish
ingly so as lake-levels decline to the wetland surface 
throughout the growing season (Price 1994a), there
after responding to local weather inputs and evapor
ation losses (Price 1994b). When protected by barrier 
beaches, coastal wetlands have modulated lake water 
inputs and losses. With narrower barrier bars, water 
flow direction oscillates between lake and marsh; with 
broader barriers, a groundwater mound persists, and 
flows are bidirectional toward both the marsh and the 
lake (Crowe and Shikaze 2004). In Cootes Paradise, a 
barrier-protected wetland at the western tip of Lake 
Ontario, stabilization of water levels following con
struction of the St. Lawrence Seaway in 1959 reduced 
vegetation diversity (Chow-Fraser 2005) including a 
decline in emergent plant cover to <15% (Chow- 
Fraser et al. 1998). Terrestrially-sourced water inputs 
can be important to some barrier-protected wetlands. 
Schellenberg et al. (2017) found surface flow into 
Delta Marsh Watershed (Manitoba) was the primary 
input, and predicted a land-use shift to urbanization 
would increase this by >50%, whereas an increase in 
cropping (currently the dominant land-use) would 
have minimal effect, and reverting to natural vegeta
tion would cause a 10% decrease in inflow.

Peatlands: swamp, bog and fen
The Canadian Wetland Classification System 
(NWWG 1997) defines peatlands as organic wetlands 
having a peat depth of >40 cm, which includes some 
swamps, and all fens and bogs. Swamps and fens 

receive base-rich groundwater and/or surface water 
and are said to be minerogenous, hence minerotrophic. 
Bogs, however, are ombrogenous (precipitation-fed), 
receiving no groundwater or surface water and thus 
are ombrotrophic, lacking in the base minerals that 
buffer acidity created by decaying organic matter 
(Zoltai and Vitt 1995).

Peat is an organic soil that accumulates in areas 
sufficiently and persistently wet such that organic 
matter decomposition is slower than the average 
annual production (Vitt 1994), and this drives peat
land succession (Thormann et al. 1999). The classic 
peatland successional pathway is one that begins with 
marshes or swamps in the post-glacial environment, 
leading to rich fens, poor fens, and eventually bogs 
accompanied by paludification of adjacent upland 
areas (Bauer et al. 2003; Klinger and Short 1996; 
Lacourse et al. 2019; Price et al. 2023). As sufficient 
organic matter (peat) accumulates, there is a transi
tion from rich fen (so-called because of their highly 
diverse vegetation community structure), which have 
strong mineral-rich surface and/or groundwater 
inputs, to moderate, then poor fen. With diminishing 
minerogenous water supply (Zoltai and Vitt 1995), 
the peatland surface rises because it is increasingly 
dominated by relatively decay-resistant sphagnum 
mosses, eventually becoming isolated from water 
inflow. At this stage, water input, at least to the living 
layer of the peatland, is exclusively provided by pre
cipitation, and by definition this peatland is a bog. 
The role of water and mineral inputs to wetlands dis
played by Zoltai and Vitt’s (1995) graphical model 
(Figure 1), shows peatlands are associated with more 
persistently wet, relatively stable water regimes, and 
consequently dominated by mosses (with sedges 
increasingly important in fens with increasing min
erotrophy), and trees present in peatlands with inter
mediate water-level variability.

Swamps, both mineral and peatland forms, are the 
least studied, least recognized, and least understood 
wetland class in Canada. This is because they are 
highly variable in form, setting, and vegetation com
munity, thus are hard to define (Warner and Asada 
2006). Swamps are wetlands dominated by woody 
vegetation, including shrub forms and trees, both 
deciduous and conifer. The dominance of woody 
vegetation is a consequence of their deeper and more 
variable water table (Jeglum 1991; Locky et al. 2005), 
which affects their water budget and geochemistry. 
Swamps can be discrete systems, sometimes extensive 
albeit connected to and reliant on the broader land
scape for water (Devito et al. 1996) and base ion 
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inputs (Devito et al. 1999), or transitional landscapes 
between upland and fen (Locky et al. 2005). In add
ition to direct precipitation, some swamps receive 
water from overbank channel flow, typically in spring 
(Bradford 2000), as well as groundwater, which may 
be small but important for determining water chemis
try (e.g. Hill and Waddington 1993). Woo and 
Valverde (1981) found seasonal streamflow out of the 
swamp matched inflow. Well-defined channels experi
enced relatively little groundwater exchange within 
the swamp, but in less-defined channels there was 
considerable influent and effluent behaviour that had 
a pronounced effect on streamflow and biogeochem
istry (Warren et al. 2001; Galloway and Branfireun 
2004). Seasonal groundwater flow (2011–2017) 
through a northern Alberta margin swamp between 
upland and fen, ranged from 1 – 30% of rainfall 
(Elmes and Price 2019). However, groundwater input 
to a swamp situated on permeable moraine can be an 
order of magnitude larger than precipitation input 
(Roulet 1991a, 1991b), thus constituting a dominant 
(>70%) proportion of runoff (Waddington et al. 
1993). Near-surface water in such systems promotes 
rapid runoff response and recession rates (Roulet 
1991a, 1991b; Elmes and Price 2019). Whiteley and 
Irwin (1986) showed that upland and isolated swamps 
reduced stormflow to downstream systems. Emili and 
Price (2006) found swamp-forest in the oceanic cli
mate of north-coastal British Columbia occurred on 
relatively steep slopes and were effective at generating 
runoff through small seeps. The relatively constant 
groundwater input from adjacent colluvial slopes 
maintained the water table near the ground surface in 
the swamp. In response to large rain events, the water 
table there rose quickly, and the saturated areas devel
oped rapidly on adjacent ground surfaces (Fitzgerald 
et al. 2003). They found the release of surface water 
directly to the stream comprised up to 95% of stream 
discharge. However, the relatively steep gradients 
were associated with more rapid water table decline, 
which increased water detention times compared to 
open peatlands that had higher levels of saturation; 
thus slopes proportionately yielded less runoff (Emili 
et al. 2006). Devito et al. (2017) showed low-relief 
peatland-swamp wetlands in Alberta were the major 
source of runoff, compared to upland areas, with the 
lowest median annual catchment evapotranspiration 
and highest runoff (13 to 27% of rainfall). However, 
runoff from swamps is reduced by their high rainfall 
interception capacity. Emili and Price (2006) found 
seasonal interception between �17–22%, but with 
rates up to 59% for small, low-intensity rainfall. They 

also showed that swamp canopy intercepted fog, 
which was a relatively small contributor to through
fall, since it occurred mostly on days with rain that 
dominated the process. Duval (2019) showed inter
ception in a mixed coniferous-deciduous cedar swamp 
in Southern Ontario was �30%.

Alberta peat-margin swamps that transition 
between upland and fen can have a more variable 
water table and downward hydraulic gradients com
pared to adjacent fens, albeit with similar pH, EC, 
and base cation concentrations (Elmes et al. 2021). 
Water table drawdown, which is relatively large in 
swamps compared to other wetland systems, affects 
hydraulic properties of the soil, increasing both peat 
particle (Redding and Devito 2006) and bulk density 
(Elmes et al. 2019). Moreover, soil aeration increased 
redox potential, resulting in a higher concentration of 
SO4

2- that was mobilized and released to runoff 
(Devito and Hill 1997; Eimers et al. 2007), and 
increased levels of P and N in surface and pore water 
(Devito and Dillon 1993). Deeper water tables pro
mote leaching of solutes in swamps, and seasonal 
drawdown may suppress the rise of dissolved minerals 
(Scarlett and Price 2013). In Alberta’s Western Boreal 
Plain, forested uplands can draw water from wetlands 
and swamps at the base of hillslopes (Bauer et al. 
2009), resulting in evapoconcentration of dissolved 
minerals and nutrients in these areas (Bauer et al. 
2009; Plach et al. 2016). However, Elmes et al. (2018) 
found that the groundwater flow systems influencing 
peatlands in the Athabasca Oil Sands Region (AOSR) 
of Alberta are shallow and localized, with the swamp- 
like margins that connect upland and wetland exhibit
ing persistent recharge (Elmes et al. 2021). Research 
and modelling on similar systems in Saskatchewan 
confirm that regional connectivity has an important 
role in water supply to margin swamps, their water 
table dynamics, and groundwater transmission to 
adjacent fen peatlands (Dimitrov et al. 2014).

The regional distribution of bogs and fens in 
Canada varies along latitudinal and meridional energy 
and moisture gradients, subject to local or regional 
landscape. Latitude strongly dictates radiative and tem
perature regimes, hence plant productivity and soil 
decomposition rates, thus peat accumulation and peat
land distribution (Primeau and Garneau 2021; Rouse 
2000). Latitude also affects precipitable water in the 
atmosphere and potential evapotranspiration. 
Meridional effects relate to the degree of continental
ity, hence rainfall and humidity. Damman (1979) 
observed that in eastern North America there is a 
northern and southern limit to the presence of bogs 
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because they are fed only by precipitation, which is 
lower at high latitudes, and potential evapotranspir
ation which increases towards the south, both of 
which limit the water supply. Fens, which have add
itional water sources, have a broader range (Halsey 
et al. 1997). Peatlands occur extensively in Canada’s 
maritime Provinces, reflecting the wetter climate. 
These range from isolated systems (Damman 1978, 
1986; Langlois et al. 2015a), blanket bogs that occur 
extensively in oceanic climates on undulating land
scape (Price 1992), to peatland complexes hosting a 
vast array of interconnected patterned bogs and fens 
(Foster and Glaser 1986; Price 2009c; Price and 
Maloney 1994). In continental locations, peatlands 
occur sporadically over the Canadian Shield because 
of isolated drainage patterns (Branfireun and Roulet 
1998), providing favourable conditions for bog and 
poor fen development (Moore et al. 2021; Markle 
et al. 2022), although fens are more common where 
upland connectivity is present (Devito et al. 1996). In 
the Hudson Bay Lowlands, bogs and fens occur exten
sively, primarily in peatland complexes due to the flat 
topography and low permeability of basal sediments 
(Sj€ors 1959; Glaser et al. 2004), and are a primary 
water source for major rivers (Orlova and Branfireun 
2014; Richardson et al. 2012). In the Western Boreal 
Plain, deep sediments facilitate groundwater exchanges 
(Devito et al. 2005), which along with lower precipita
tion favour the development of fens, although bogs 
also occur (Vitt et al. 1994). In High Arctic settings, 
peat forming wetlands can occur where groundwater 
or late-lying snowbanks sustain wetness (Woo and 
Young 2006; Young and Woo 2000), although peat 
accumulation is generally too thin (<15 cm) for them 
to be classified as peatlands using the Canadian defin
ition of 40 cm (NWWG 1997). Fen peatlands occur in 
the low arctic where, in addition to snowmelt, rainfall 
can help sustain summer wetness (Roulet and Woo 
1986a). In British Columbia, bogs and fens occur pri
marily on the coastal lowland (Howie and Van 
Meerveld 2013). In mountainous areas, bogs and fens 
generally occur in valley bottoms (Kershaw 2003, 
2022), although in hyper-maritime areas they can 
occur at higher elevations and greater slopes (Emili 
and Price 2006; Fitzgerald et al. 2003).

In bogs and poor fens, sphagnum mosses are a 
keystone genus that dominate the plant cover 
(Rochefort 2000) and have a critical role in their 
hydrological function (Thompson and Waddington 
2008). Their dominant cover, along with their resist
ance to decay (Glenn et al. 2006; Turetsky et al. 
2008), means they are the primary constituent of bog 

and poor fen peat, comprising the matrix for water 
storage and flow. The upper layer of moss and peat 
has commonly been referred to as the acrotelm, being 
the variably saturated vadose zone, typically the upper 
�50 cm (Price 1992; Howie and Van Meerveld 2011) 
but sometimes 10s of cm more (Lafleur et al. 2005). 
This overlies the perpetually saturated catotelm. The 
hydrological properties ascribed to the acrotelm and 
catotelm have commonly been used to describe many 
peatland functions, however, Morris et al. (2011) 
argue that the diplotelmic model is overly simplistic 
for many hydrological and biogeochemical processes, 
as it does not accommodate spatially relevant hot
spots, nor account for the presence of biogenic gas 
below the water table (thus peat is not saturated). 
However, as disciplines mature, it is common for 
foundational conceptual models (like the acrotelm- 
catotelm model), which favoured simplicity and 
apparent generalizability, to be challenged in response 
to empirical evidence of nature’s complexity. From 
the inception of wetland ecohydrology as a discipline, 
a growing body of evidence suggests that wetlands 
exhibit a diverse range of properties, characteristics, 
and functions that are most accurately expressed 
along a continuum, and therefore preclude easy cat
egorization. While inconsistencies have been identi
fied with the acrotelm-catotelm conceptual model 
(Morris et al. 2011), including what constitutes the 
boundary between the two zones, it has been a fixture 
of Canadian peatland literature over the past 75 years. 
As such it will continue to have utility in describing a 
characteristic pattern in hydrophysical properties that 
is found in many peatlands across the circumboreal 
region, while newer research explores concepts where 
the concept does not apply. This paradox is examined 
in detail by Morris et al. 2011). Regardless of nomen
clature, the variably saturated near-surface zone of 
bogs exhibits strong gradients in hydraulic properties 
that govern water exchanges. For example, the 
hydraulic conductivity in this zone can decrease up to 
five orders of magnitude over 50 cm (Hoag and Price 
1995). Drainable porosity, the property of explicitly 
defined layers that together comprise the aquifer’s 
specific yield (Price et al. 2023) also decreases strongly 
with depth (Quinton et al. 2008). These properties 
have been shown to be related to bulk density (Gupta 
et al. 2023) which is easier to determine. The strong 
gradients of hydraulic conductivity result in a water 
table-transmissivity feedback mechanism (McCarter 
and Price 2017a, 2017b, 2017c; Price 1992), in which 
high water tables exploit the high hydraulic conduct
ivity in the upper layer to promote runoff, and lower 
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water tables relegate flow to the lower hydraulic con
ductivity layers. In patterned peatlands (i.e. peatlands 
with alternating ridges and pools aligned perpendicu
lar to the dominant flow direction) this mechanism 
increases connectivity between peatland types and 
drainage channels during spring and fall, so that a fill 
and spill drainage mechanism operates (Quinton and 
Roulet 1998). The fill and spill drainage mechanism 
can also be observed inter-annually in Precambrian 
Shield headwater catchments, where in drier years 
wetlands decrease catchment hydrological connectivity 
but in wetter years increase hydrological connectivity 
(Lane et al. 2020). Once again challenging a founda
tional model, Balliston and Price (2022) suggest a 
three-phase connectivity regime is more appropriate 
in the James Bay Lowlands of northern Ontario, in 
which runoff activity can be characterized as discon
nected (typically winter and dry summer periods), 
connected (typically late spring and fall), or high 
activity (typically during snowmelt).

Fens, as previously noted, are hydrologically con
nected to the upland landscape, receiving surface- or 
groundwater, the quantity and quality of which con
trols their character (Glaser et al. 2004), ranging from 
rich fens well-connected to sources of external water 
and dissolved minerals (Vitt and Chee 1990), to poor 
fens that have accumulated sufficient peat to severely 
reduce the hydraulic gradients that drive water and 
solute flow towards them (Lacourse et al. 2019). They 
are distinct from swamps, which are also connected 
to the surrounding landscape, with a less variable 
water table regime (see Figure 1). While groundwater 
inflows have often been found to be the primary 
source of solutes to fens (Larocque et al. 2016; 
Whitfield et al. 2010), this is not always the case 
where there is solute-rich surface water inflow (Duval 
and Waddington 2018). The solute inputs are variable 
both seasonally (Vitt et al. 1995) and annually 
(McLaughlin and Webster 2010). Seasonally, solutes 
can be flushed during snowmelt, and develop spatially 
distinct patterns as the system dries, especially in less 
connected areas (Thompson and Woo 2009). Runoff 
from dry periods can thus have an enhanced geo
chemical signature (Metcalfe and Buttle 2001). 
Groundwater flowing beneath these peatlands can 
help sustain surface wetness (Ferlatte et al. 2015), pre
dominantly near fen margins (Elmes et al. 2021) and 
help generate baseflow in outlet streams (Branfireun 
and Roulet 1998; Buttle et al. 2004; Spence et al. 
2011). This can persist in winter (Price 1987), due to 
contributions from adjacent bogs as well as mineral 
uplands (Price and FitzGibbon 1987). However, 

variable groundwater input can cause flow reversals 
within fens (Devito et al. 1997), resulting in flow 
from peatland to upland (Elmes and Price 2019; 
Ferone and Devito 2004). Reversals within peatlands 
that respond to radially outward hydraulic gradients 
can be sustained because of subsidence associated 
with the high compressibility of peat (MacFarlane and 
Radforth 1965), although the strength of flow may be 
mitigated because of the potential orders of magni
tude decrease in hydraulic conductivity associated 
with seasonal subsidence (Price 2003). Alternatively, 
the generation of entrapped biogenic gases, mainly 
methane, can cause peat expansion and alter 
hydraulic gradients (Kellner et al. 2005; Strack et al. 
2006), but also cause pore occlusion that reduces flow 
(Kellner et al. 2004; Kettridge et al. 2013). Peat vol
ume change reflects patterns in water storage (Roulet 
1991b) that can rival specific yield in terms of 
accounting for seasonal water storage changes (Price 
and Schlotzhauer 1999). Peat volume change has the 
effect of maintaining the water table closer to the sur
face than it would otherwise be (Whittington and 
Price 2006), consequently reducing peat decompos
ition rates and carbon release (Strack et al. 2008; 
Strack and Waddington 2007), and altering nutrient 
dynamics (Macrae et al. 2013). Persistent high water 
level in fens can cause aqualysis, in which peat deg
radation results in open water (Tardiff et al. 2009).

Compared to bogs, the additional surface or 
groundwater input to fens means their water tables 
tend to be higher and more stable (Balliston and 
Price 2022; Dai et al. 1974; Vitt et al. 1995), although 
not necessarily (Duval and Waddington 2011). 
Consequently, runoff from fens can be larger than 
from bogs (Connon et al. 2014; Price and Maloney 
1994; Quinton et al. 2003). Fen peat (Elmes et al. 
2021) is distinct from that in bogs due to the different 
plant community from which it is formed, its geo
chemistry, and degree of water table variability (Zoltai 
and Vitt 1995), hence state of decomposition. Fen 
saturated hydraulic conductivity (Ksat) decreases with 
depth, as in bogs, but in both peatland types its vari
ability is high, much larger than variability arising 
from methodological differences between laboratory 
and field techniques (Rosa and Larocque 2008). While 
few studies have compared Ksat in nearby bogs and 
fens, Price and Maloney (1994) found Ksat higher in a 
fen water track than in the surrounding basin fen, 
and intermediate values in a nearby bog. Balliston 
and Price (2023) found fen Ksat to be higher, but not 
significantly so. Gupta et al. (2023) found that near- 
surface Ksat in three Southern Ontario peatlands was 
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greatest for a swamp, then bog, then fen, albeit again 
not significantly different. In bogs and fens, Ksat can 
decrease by three or more orders of magnitude over 
tens of centimetres (Quinton et al. 2008). During dry 
periods when the water table is relatively deep, the 
low drainable porosity (�0.05) at depth enables the 
water table to rise quickly into the upper, highly con
ductive layer and produce a rapid hydraulic response 
to precipitation (Quinton and Hayashi 2004), thereby 
regulating water table position.

B) hydrological themes in wetland research

i) water stores and fluxes in the near surface
A key issue addressed in Canadian wetland research 
within the past 75 years has been to better understand 
the controls on soil-vegetation-atmosphere transfers 
(SVAT) and the near-surface hydrology that strongly 
influences these transfers. On vegetated wetland surfa
ces, plant, energy, water and carbon exchanges are 
closely integrated and exhibit strong feedback with 
the lower atmosphere (Wang et al. 2002; Yi et al. 
2007). This in turn feeds back to the soil moisture 
conditions, biogeochemical and biophysical processes 
(Malhotra et al. 2016) that can modify the soil, thus 
feedbacks to the soil-vegetation-atmosphere fluxes 
(Kettridge et al. 2013, 2017; Waddington et al. 2015). 
This feedback is strongly governed by not only atmos
pheric fluxes but the structure of the variably satu
rated upper layer of soil between the surface and the 
water table (the vadose zone). Given that wetlands are 
defined as having high water tables, at least periodic
ally, the vadose zone of wetlands is typically thinner 
than in upland settings (e.g. Price and FitzGibbon 
1987; Todd et al. 2006; Wells et al. 2017), or entirely 
absent in the case of marshes and shallow open water 
wetlands. Thus, evaporation from open water that is 
present in many wetlands is simple in comparison to 
SVAT processes. Estimating and understanding open 
water evaporation rates, however, is complicated by 
markedly different atmospheric resistance than adja
cent vegetated surfaces and the highly ephemeral 
nature of standing water levels (Price 1991). Research 
on vadose zone processes in wetlands, especially peat
lands, is relatively recent, mostly from the 2000s 
onward, in part due to the inability of some instru
mentation designed for mineral soils to effectively 
measure and parameterize key attributes of peat soils. 
SVAT wetland research began in earnest in the 1970s.

Progress in understanding vadose zone hydrology
MacFarlane (1957) characterized peatland ecology and 
the resulting peat structure based primarily on quali
tative factors in developing a guide to peatland (mus
keg) classification. Many of the early works were 
focused on characterizing peat and peatlands for their 
geotechnical properties (Landva and Pheeney 1980; 
Walmsley 1977). Yet, these works presented some of 
the first measurements of hyaline cell openings 
(vacuoles present in sphagnum mosses that affect 
water retention) and other peat structural components 
that are critical to peatland vadose zone hydrology. 
These early works laid the foundation for the profu
sion of studies by Canadian scientists over the follow
ing decades.

The upper layer of living moss and dead but 
poorly decomposed moss litter are rarely saturated. 
Lacking roots and a vascular system, mosses are reli
ant on the upward movement of water through capil
lary flow by water conducting pores (i.e. saturated 
and hydrologically connected at a given soil water 
pressure) to supply water at the evaporating surface 
(the growing surface of the moss, in the case of 
sphagnum, called the capitula) from below (Price 
et al. 2009; Price and Whittington 2010). As such, 
considerable effort has been spent describing their 
water retention characteristics and unsaturated 
hydraulic conductivity. McCarter and Price (2014) 
estimated upward water flow in different moss species 
and showed that Sphagnum fuscum and S. rubellum 
were better able to sustain moisture at the typical 
range of pressures likely to occur in moss hummocks 
than what is now referred to as S. magellanicum com
plex. Goetz and Price (2015) showed how different 
unsaturated hydraulic conductivity and water reten
tion characteristics of sphagnum and a common fen 
moss, Tomenthypnum nitens, combined to make them 
equally effective at upwardly transmitting water for 
evaporation, despite the apparent dryness of the latter. 
In both cases, the mosses are the evaporative interface 
between the peatland and the atmosphere.

Once new growth has buried moss tissue and the 
plant cells subsequently die creating ‘moss litter’, 
decomposition processes begin, creating peat. The peat 
below living mosses is influenced by the peatland’s 
degree of minerotrophy and can result in pronounced 
changes in hydrophysical properties with depth and 
between peatlands due to differences in the rate of 
decomposition and consolidation (Moore and Basiliko 
2006). As the degree of minerotrophy increases, 
decomposition typically increases, causing a shift in 
the pore size distribution towards smaller pores 
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(Balliston et al. 2018; McCarter et al. 2019; McCarter 
and Price 2014). These changes can be abrupt, as in 
the case of Tomenthypnum nitens (Goetz and Price 
2015), but as long as the hydraulic continuity of pores 
is unimpacted, vertical transport of liquid water will 
occur (McCarter and Price 2015). This shift towards a 
greater proportion of smaller pores is clearly shown 
by the decrease of saturated hydraulic conductivity by 
several orders of magnitude within a ten or a few tens 
of centimeters from the surface in the vadose zone 
(Golubev and Whittington 2018; McCarter and Price 
2014; Quinton et al. 2008; Taylor and Price 2015). 
Microscopic analysis and numerical modelling 
(Rezanezhad et al. 2009, 2010) confirmed that the 
reduction of saturated hydraulic conductivity with 
depth is the result of increasing pore compaction and 
interparticle tortuosity, and decreasing pore diameter 
with depth (Quinton et al. 2008; Gharedaghloo et al. 
2018). Balliston and Price (2020) further described 
how peat structure contributed to water (and solute) 
rise in moss litter, and its local variability. In some 
sphagnum dominated systems, water vapour transport, 
and subsequent distillation at the capitula, have been 
observed to be critical for sphagnum moss desiccation 
avoidance (Price et al. 2009). Yet, there remains key 
questions on the coupled importance of liquid and 
vapour water fluxes to sustaining biological processes 
and the impacts on local ET.

While different broad morphologies of moss and 
peats can influence vadose zone hydrology, so can the 
specific species of sphagnum moss. McCarter and 
Price (2014) observed that sphagnum mosses that 
grew further above the water table were better able to 
retain water under greater soil water tensions and 
more effectively conduct water upwards to the evapo
rating surface (in this case the moss capitula). These 
trends were broadly confirmed on a variety of sphag
num species but in similar growth microforms (Goetz 
and Price 2015; Golubev et al. 2021; Golubev and 
Whittington 2018; Taylor et al. 2016; Taylor and 
Price 2015), suggesting that the soil hydraulic proper
ties of a given sphagnum species may not be limited 
to a single ecohydrological niche or microform 
(Golubev et al. 2021). As such, the specific sphagnum 
species may be less important than the ecohydrologi
cal niche (microform) when determining their hydro
logical function and hydrophysical properties, but this 
remains an open question in the literature.

When the water table drops, causing water to prefer
entially drain from the larger pores, the remaining peat 
may not have the physical structure to support the 
overlying material (Price et al. 2005), resulting in a 

lowering of the peat surface (Lafleur and Roulet 1992; 
Price 2003; Price and Schlotzhauer 1999; Waddington 
et al. 2010, Whittington and Price 2006). When the 
water table rises and the drained pores refill with water, 
the peat surface rises to a similar degree as its decline 
(Price 2003; Price and Whittington 2010; Waddington 
et al. 2010). This is a mostly reversible volume change 
in undisturbed peatland and often referred to as ‘mire 
breathing’. As the larger pores compress following con
solidation, the unsaturated hydraulic conductivity and 
soil water retention in the unsaturated zone increase, 
resulting in greater hydrological connectivity between 
the water table and atmosphere. This mechanism repre
sents a critical ecohydrological feedback to maintain suf
ficient water supply to sphagnum capitula (Golubev and 
Whittington 2018). However, these changes do not 
occur uniformly across a peatland, rather the largest 
changes occur in lower bulk density peat (low lawns) 
and the least in higher density peat (hummock micro
forms) (Waddington et al. 2010; Whittington and Price 
2006). Changes in the vadose zone pore volume are 
also an important consideration for estimating water 
storage and surface elevation (Price et al. 2005; 
Schlotzhauer and Price 1999), as well as laboratory- 
determined hydrophysical properties (Golubev and 
Whittington 2018).

Scaling and partitioning of evapotranspiration
Over the past several decades Canadian wetland 
scientists have made significant progress towards our 
understanding of the scaling and partitioning of evapo
transpiration (ET) in wetlands aided by the advent of 
more accessible high precision methodologies. Some of 
the first wetland energy budget and evapotranspiration 
work was conducted in the Hudson Bay Lowlands 
(Stewart and Rouse 1976a). Energy-budget calculations 
and equilibrium evaporation estimates from a well- 
drained lichen-dominated raised beach ridge and a wet 
sedge meadow produced a simple model, expressed in 
terms of incoming solar radiation and air temperature, 
from the comparison of actual and equilibrium evapor
ation, which on a daily basis are accurate to within ± 
10% (Stewart and Rouse 1976b). Examples of the ear
liest work on fire effects on evapotranspiration were 
also done in this region (Rouse and Kershaw 1971). 
Areas of ground lichen in the Subarctic are particularly 
susceptible to fire either by human activity or by nat
ural causes. Experimental work in the Hudson Bay 
Lowlands showed that the burning of lichen has a pro
nounced effect on the groundwater regime, where the 
lichen-dominated surfaces act as an effective mulch in 
preventing evaporation from the subsurface zone 
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whereas the burned areas, which can evaporate more 
water into the atmosphere when moist, also develop 
strong resistances to evaporation as the soil surface 
layers become drier (Rouse and Kershaw 1971).

Work on wetlands evolved based on the principle 
that there is a large degree of spatial variability in 
wetland ET within (vegetation community scale) and 
among (catchment scale) landscape units, which are 
controlled by patterns in vegetation, soil moisture and 
soil physical properties. Work has been done in 
Canada demonstrating that spatial variability in ET 
within wetland and peatland landscapes can be large, 
and as such these systems should not be treated as 
homogenous units, and that they are strongly influ
enced by their surrounding catchment (Green et al. 
2021; Petrone et al. 2008; Roulet and Woo 1986). As 
a result of these internal (hydrophysical properties, 
vegetation community) and external controls (basin 
shape, catchment characteristics), peatland actual ET 
in general, is less than potential ET (PET) (Lafleur 
and Roulet 1992). Further, within a peatland, sphag
num and other nonvascular wetland plant species 
control ET differently throughout the growing season 
and as such should be considered an integral part of 
the moisture and water balances within wetland envi
ronments at the sub-landscape unit scale (Brown 
et al. 2010, Scarlett et al. 2017).

Methodological developments for assessing peat 
soils
Canadian researchers have developed methodologies 
specifically designed to characterize the soil hydraulic 
properties of peat, which are crucial for interpreting 
their role in system hydrological function. 
Fundamental hydraulic properties of the vadose zone 
include its water retention behaviour and its hydraulic 
conductivity, which varies with the level of saturation. 
Thus, hydraulic conductivity depends on the morpho
logical character of the peat matrix (Price et al. 2023). 
In peat, soil morphology varies spatially due to differ
ences in the botanical origin of the plant material 
from which it is composed, its state of decomposition 
and its position in the soil profile that affects its 
degree of consolidation (McCarter et al. 2020). By 
comparison to mineral soils, peat is delicate, especially 
the living and poorly-decomposed moss and litter 
that dominates the upper layer in bogs and many 
fens. This, along with its high compressibility, render 
methods developed for fixed volumes of mineral soil 
unsuitable for measuring its water retention charac
teristics and its unsaturated hydraulic conductivity 
function (Caron et al. 2015; Price et al. 2008). To 

address this, Price et al. (2008) developed the floating 
tension disc method for laboratory use that concur
rently measures soil water retention and hydraulic 
conductivity curves below saturation in the highly 
compressible and low bulk density organic soil (spe
cifically mosses and sphagnum litter). With this 
method, a hydraulic and pressure gradient is induced 
across a peat core to measure the steady-state flow of 
water and soil moisture content. However, by induc
ing a pressure gradient across the core, the recorded 
pressure head does not necessarily agree with the 
average internal soil water pressure, so McCarter 
et al. (2017a, 2017b, 2017c) updated this method by 
reversing the direction of flow, thus eliminating the 
pressure gradient across the core.

Canadian scientists have also focused methodo
logical developments in peat-based growing substrates 
(Allaire-Leung et al. 1999; Nemati et al. 2002). 
Nemati et al. (2002) used tension tables to induce a 
constant pressure potential on a sample and measure 
the air-entry pressure using a mini-tensiometer and a 
pressure transducer. Allaire-Leung et al. (1999) used 
time domain reflectometry to show how plant growth 
impacts peat hydrophysical properties. However, these 
techniques have not been adopted by the wider peat
land research community.

Golubev et al. (2021) questioned the appropriate
ness of the standard 5 cm core, comparing the derived 
soil hydraulic properties of a 15 cm core to its three 
5 cm constituent cores. They noted that the minimum 
pressure step was equal to the core height (thus 15 cm 
in the larger core) such that use of a larger core is 
fundamentally unable to characterize the critical soil 
water retention and unsaturated hydraulic conductiv
ity at pressures close to zero (saturation). In other 
developments, computed tomography scans have been 
used to estimate hydraulic conductivity, pore network 
geometry, and solute transport behaviour 
(Gharedaghloo et al. 2018; Quinton et al. 2009; 
Rezanezhad et al. 2009, 2010. While providing a 
meaningful contribution to the understanding of peat 
properties, this method is not commonly available to 
most researchers.

ii) solute transport
The transport, transformation, and fate of nutrients 
and other solutes is integrally linked to the form and 
function of wetlands, and the role they perform in the 
broader landscape. Moreover, incidental introduction 
of contaminants into wetlands from atmospheric pol
lutants (Branfireun et al. 1999; McCarter et al. 2022), 
accidents like train derailments or pipeline rupture 
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(Zoltai and Kershaw 1995), and industrial or agricul
tural effluent (Mudroch and Capobianco 1979); and 
the deliberate release for the purpose of treatment 
(Viraraghavan and Ayyaswami 1987) has established 
the value of solute transport research in wetlands. 
Many studies have been conducted to demonstrate 
the distinct biogeochemical processes that occur in 
wetlands and highly organic soils, such as peat. Yet, 
these studies should be viewed within the broader 
context of scientific developments in general solute 
transport theory in conventional mineral porous 
media (many of which were also conducted by 
Canadians, see Hayashi and van der Kamp (2023) for 
a review). Early work on solute transport in wetland 
soils focused on the use of peat as an adsorptive 
medium, due to the large specific surface area (Tinh 
1970) and high organic carbon content (Smith et al. 
1958). Laboratory experiments demonstrated the abil
ity of peat to effectively adsorb, and therefore retard, 
heavy metals (Coupal and Lalancette 1976), hydrocar
bons (Gharedaghloo and Price 2021; Zytner 1994), 
volatile organics (Zytner et al. 1989), naphthenic acids 
(Janfada et al. 2006), landfill leachate (Cameron 
1978), and nutrients found in wastewater (Rana and 
Viraraghavan 1987).

The unique characteristics of wetlands have led 
them to be used to treat contaminated wastewater, 
not only due to the adsorptive properties of organic 
soils but also the high rate of biogeochemical cycling 
(Kennedy and Mayer 2002). Natural and artificial 
treatment wetland pilot projects were established 
across Canada to assess the efficacy of contaminant 
retardation, transformation, and removal, such as 
those near James Bay as described by (Dubuc et al. 
1986), eastern Ontario (Fernandes et al. 1996), south- 
central Ontario (Rochfort et al. 1997), and the 
Kivalliq Region of Nunavut (Yates et al. 2012). Many 
of these projects placed an emphasis on understand
ing function, as opposed to process. Yet, elucidating 
these complex interactions between surface chemistry, 
pore geometry, and solute reactivity in highly organic 
soils have also been a significant contribution of 
Canadian scientists. Initial forays into these interac
tions involved core-scale laboratory experiments, like 
those of Price and Woo 1988c; Hoag and Price 
(1997), and later authors (Caron et al. 2015; Kleimeier 
et al. 2017; McCarter et al. 2018, 2019; Rezanezhad 
et al. 2012). These experiments found earlier solute 
arrival and a more prolonged tailing than would be 
expected in a conventional porous media, which was 
attributed to the dual porosity structure of peat. This 
structure, which is particularly associated with 

sphagnum peat, is a consequence of the large propor
tion of dead-end pores (Hoag and Price 1997; Price 
and Woo 1988c) that act as water and solute reser
voirs. Although the geometry of these pores precludes 
water flow, the process of molecular diffusion 
attempts to equilibrate concentrations between the 
mobile and immobile regions, causing an exchange of 
solutes proportional to the concentration gradient. 
However, Simhayov et al. (2018) and McCarter et al. 
(2019) noted that in some peats the exchange rates 
were essentially instantaneous, resulting in solute 
transport not being significantly retarded, and there
fore capable of being represented by the conventional 
advection-dispersion equation.

Gharedaghloo et al. (2018) used pore network mod
elling of a high-resolution peat sample collected from 
Scotty Creek, NWT, demonstrating the locally iso
tropic nature of peat and increase in tortuosity with 
decomposition. These physiochemical characteristics of 
peat have been found to have profound implications 
for ecohydrological and biogeochemical function of 
peatlands. Rezanezhad et al. (2017) showed that the 
dual porosity structure of peat has implications on the 
biogeochemical cycling of nitrogen, specifically that 
the larger interfacial area between the mobile and 
immobile pore space found in deeper, more decom
posed peat enhances nitrate reduction. The attenuation 
of contaminants due to the adsorptive capacity of peat 
and diffusion into dead-end pores contributed to the 
resilience of graminoids and mosses exposed to the 
high salinity of oil sands process-affected water 
(Rezanezhad et al. 2012b). Rezanezhad et al. (2012a) 
showed that the presence of vascular plants increased 
upward solute transport, due to hydraulic lift and 
redistribution, lowering the time for a contaminant to 
potentially impact the surface vegetation. Boudreau 
et al. (2009) observed adsorption of potassium and 
copper in a peat-based growing media, significantly 
limiting upward transport of copper due to its higher 
adsorption affinity. Recent research has also examined 
the fate and transport of non-aqueous phase liquids 
(NAPL) in peat, characterizing the multiphase flow 
behaviour of diesel (Gharedaghloo and Price 2019; 
Gupta et al. 2023) and the response of peatland micro
bial communities to NAPL contamination (Gupta 
et al. 2020). This work suggested that minimally inva
sive methods of remediation, such as ditching, artifi
cial water table manipulation, and biodegradation 
should be explored as viable techniques for reducing 
the volume of immiscible contaminants in peatlands 
(Gharedaghloo and Price 2019; Gupta et al. 2023).
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One of the first attempts globally to explore solute 
transport in peatlands at the field scale was the experi
mental work of Hoag and Price (1995), which 
described the results of a natural gradient tracer test 
in a Newfoundland blanket bog. This study affirmed 
that the axiom of macroscopic heterogeneity in the 
hydraulic conductivity field exerting a dominant influ
ence on the transport of solutes in groundwater 
remains true in peatlands. Due to the typical pattern 
found in peatlands in which hydraulic conductivity 
decreases several orders of magnitude within deci
meters of depth, the tracer movement was largely con
strained to the high permeability near-surface (Hoag 
and Price 1995). However, it also demonstrated that 
the physical structure of peat, specifically the presence 
of the immobile porosity, could considerably slow the 
advance of a solute front due to diffusion into dead- 
end pores, even when the average groundwater vel
ocity is high and the solute is ostensibly non-reactive. 
This latter notion, the presumption that the widely- 
used tracer, chloride, is conservative, has been chal
lenged decades later by McCarter et al. (2019) who 
proposed that the negatively-charged peat surface can 
push anions into the highest velocity regions of the 
pore space in a process known as anion exclusion, 
while at higher chloride concentrations (>100 mg L−1) 
anion adsorption retards chloride transport (Caron 
et al. 2015; McCarter et al. 2018, 2019).

The exchange of solutes between wetlands and the 
surrounding landscape has also been an area of active 
Canadian scientific inquiry. At a prairie slough in 
Saskatchewan, Hayashi et al. (1998) revealed the sea
sonal cyclical movement of chloride between the wet
land and adjacent upland. Salinity cycles operating on 
multiannual timescales, related to wet and dry climatic 
periods, were described by Heagle et al. (2013) at a 
similar Saskatchewan wetland. Dry periods also 
impacted sulphate export at two headwater swamps in 
central Ontario, following a prolonged water table 
decline in which oxic conditions resulted in sulphur 
oxidation, subsequent high-intensity precipitation events 
resulted in disproportionately high solute export at the 
wetland with limited upland connectivity (Devito and 
Hill 1997). At a sloped wetland complex consisting of 
swamp, wooded bog and open bog, in coastal British 
Columbia, Emili and Price (2013) observed how slope 
position interacted with event and seasonal water avail
ability, influencing the concentration and composition 
of major ions.

Building on the field experiment of Hoag and 
Price (1995), McCarter and Price (2017b) performed 
a field-scale solute transport experiment in a ladder 

fen by releasing a simulated chemical load of waste
water treatment plant effluent. At the study fen there 
was preferential water and solute transport through 
the low-lying regions in peat ridges that bisect pools 
in ladder and ribbed fens. Over 90% of the solutes 
were transported through the low-lying regions and 
the high hydraulic conductivity near-surface peat 
(McCarter and Price 2017a, 2017b). Balliston et al. 
(2018) explicitly demonstrated the spatial correlation 
between solute movement and peatland microtopog
raphy, with preferential transport occurring along hol
lows at a domed bog in northern Ontario. These 
preferential flow paths significantly increase the 
downgradient transport of reactive solutes (McCarter 
et al. 2017b). In the same experiment as McCarter 
and Price (2017b), McCarter et al. (2017b) observed a 
rapid removal of nitrogen, ammonium, and phos
phate from the pore-water but sulphate was excep
tionally mobile (similar to that of sodium). Despite 
these advances in understanding reactive solute trans
port, there are still research gaps that require further 
investigation, particularly integrating the mechanisms 
of solute transport in peat, which have been explored 
at the pore- and core-scale, with processes that have 
relevance at the field- and landscape-scale. Given the 
complexity of peat as a medium that exhibits 
compressibility, a dual-porosity structure, mixed- 
wettability, and is frequently unsaturated (and frozen), 
this is not a trivial task.

Iii) the role of Ground-Ice in wetland hydrology
Frozen ground is a key factor influencing soil tem
perature and moisture, subsurface hydrology, rooting 
zones and nutrient cycling of wetlands (Smerdon and 
et al. 2005; Tarnocai 2009). Frozen ground is ubiqui
tous in Canada’s Arctic, Subarctic and northern 
Temperate zones where it occurs seasonally or in the 
form of permafrost. Arctic wetlands occur in the zone 
of continuous permafrost, and seasonal water 
exchanges are constrained to a relatively thin supra- 
permafrost layer. In the Subarctic, discontinuous 
permafrost results in more complicated patterns of 
groundwater exchange (Hayashi et al. 2004), while in 
temperate wetlands, where frost is seasonal, the 
hydrological impact of frost is limited to the annual 
snowmelt runoff event (Woo 1986). Arctic wetlands 
often contain peat, but the depth of accumulation is 
typically too thin to meet the definition of a peatland 
(i.e. >40 cm depth; NWWG 1997). Elsewhere in 
Canada, research on the role of ground ice in wet
lands have focused on peatlands, in part because of 
their high hydrological sensitivity to the presence of 
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ground ice, and in part because of the role of peat
lands in promoting ground frost, especially perma
frost (Brown 1963).

In the Canadian Arctic, wetlands cover about 3– 
5% of the land area (NWWG 1988). Woo and Young 
(2006) noted that Arctic wetlands range in size from 
small, isolated patches to regional (>100 km2) wet
lands. Patchy wetlands are more common in the High 
Arctic and include wetlands below snowbanks 
(Lewkowicz and Young 1990), groundwater-fed wet
lands (Young and Woo 2000), valley bottom wetlands 
(Ryd�en 1977), riparian wetlands (Young 2008), tundra 
ponds (Woo and Guan 2006), and wetlands associated 
with lakes (Winter and Woo 1990). Extensive wet
lands are found in low-lying and perennially wet ter
rain including sedge-moss meadows (Abnizova and 
Young 2010), ice-wedge polygon fields (Young et al. 
2010), and deltas (Marsh and Hey 1989).

In contrast to the wetlands of other regions, Arctic 
wetlands are typically underlain by permafrost 
(NWWG 1988) and, for most of the year, are covered 
by snow (Church 1974). Where permafrost is present, 
it can prevent or restrict hydrological interaction 
between surface and groundwater systems (Brandon 
1962). Moreover, the terrain above permafrost has a 
unique suite of geomorphic features that influence the 
hydrology of Arctic wetlands. These include frost 
cracks, ice-wedge polygons, ice-cored mounds and 
other types of cryogenic patterned ground, as well as 
thermokarst terrain caused by permafrost thaw- 
induced ground surface subsidence (Woo and Young 
2006). At the end of the Arctic winter, snowmelt 
releases at least half the annual precipitation (Woo 
1986). Because the water table is typically close to the 
ground surface when wetland surfaces begin to freeze 
at the end of summer (Landals and Gill 1973), when 
meltwater is released at the end of winter it is largely 
restricted from infiltrating the ground (Woo 1986). 
Instead, the meltwater refreezes at the base of the 
snowpack, forming basal ice. Following the removal 
of the snow and ice cover from wetlands, the upper 
surface of the frozen, saturated layer of ground 
defines the relatively impermeable frost table which 
descends through the active layer as it thaws. The 
water table and frost table represent the upper and 
lower boundaries of the thawed, saturated portion of 
the active layer which conducts the large majority of 
subsurface runoff through wetlands (Quinton and 
Hayashi 2004). Since the horizontal hydraulic con
ductivity in the active layer decreases by several 
orders of magnitude with increasing depth (Quinton 
et al. 2000), subsurface flow rates decrease as the 

depth of thaw increases. However, as noted above, 
even when the active layer is fully thawed, hydro
logical interaction between active layer (i.e. supra- 
permafrost) water and sub-permafrost groundwater is 
precluded or restricted, with some exceptions.

Runoff over wetland ground surfaces is most 
prevalent at the end of winter when the snowmelt 
water supply is greatest, and the relatively imperme
able frost table is close to the ground surface. The 
duration of overland flow is governed by the snow
melt water supply, rate of ground thaw, and degree of 
hydrological connection with upslope water sources 
(Woo 2012). Unlike the wetlands of other regions, 
those of the Arctic do not normally receive significant 
precipitation following the spring freshet. In the high 
Arctic, frequent fog and low cloud deposit trace rain
fall in summer, while at lower latitudes, summer rain 
events can provide greater input (Prowse 1990).

At the hillslope scale, the distribution of surface 
and subsurface runoff in Arctic wetlands can be 
strongly affected by the unique geomorphic features 
of permafrost referred to above, and their associated 
type and distribution of vegetation. Examples include 
preferential flow around frost mounds (Hodgson and 
Young 2001), along frost cracks and ice-wedges (Harp 
et al. 2020), ‘inter-tussock’ and ‘inter-hummock’ 
(Quinton and Marsh 1998) channels, and along ‘water 
tracks’ (Price and Maloney 1994). At the basin scale, 
Obradovic and Sklash (1987) reported that saturated 
source areas for overland flow shrink soon after the 
spring freshet, leaving subsurface flow as the domin
ant runoff mechanism during summer. However, 
Lewkowicz and Young (1990) found that many wet
lands continue to function as runoff source areas long 
after adjacent terrains stopped producing runoff. Such 
wetlands are often located downslope of late-lying 
snowpacks which continue to supply water well into 
the summer period (Lewkowicz and Young 1990). 
Roulet and Woo (1988) found that the spatial integra
tion of runoff producing areas was achieved not grad
ually but abruptly once the water storage threshold of 
basin hydrological units were exceeded.

Although evapotranspiration rates decrease with 
increasing latitude due to lower energy availability 
and a higher proportion of non-vascular plants, 
Prowse (1990) reported that the relative importance 
of ET to the annual water balance increases since pre
cipitation rates decrease more rapidly with latitude. 
Brown et al. (1968) found that approximately 50% of 
rainfall on Arctic regions evaporates, and Roulet and 
Woo (1986) reported that 66% of the total annual 
precipitation (rain and snow) evaporated at Baker 
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Lake, N.W.T. During summer, the deeper frost and 
water tables, and the increased energy available for 
ET decreases the amount of water available for sur
face or subsurface runoff.

Subarctic and high boreal regions of Canada have 
extensive areas of peatland-dominated terrain that is 
closely associated with the occurrence of discontinu
ous permafrost (Brown 1964). While frozen soils can 
promote wetland occurrence by keeping the water 
table close to the surface (Roulet and Woo 1986b), 
surficial peat can also initiate permafrost development 
and help preserve it. Peat efficiently conducts energy 
towards the atmosphere during winter when it is 
saturated with ice, while thermally insulating the 
ground from gaining energy during summer when 
the surficial peat is relatively dry (Brown 1963). In 
the zone of sporadic or discontinuous permafrost, 
seasonal frost is ubiquitous, thus many of the peat
lands of this region demonstrate similar responses to 
the annual snowmelt event since the snowpack melts 
well before the seasonal ground frost is thawed (Woo 
and Winter 1993). However, as the seasonal frost and 
snowmelt moisture supply diminish, the contrast of 
hydrological functioning among organic terrain types 
increases and is particularly evident between perma
frost and permafrost-free terrains.

In continental western Canada, discontinuous 
permafrost is generally restricted to bog peatland 
areas (Vitt et al., 2018), especially peat plateaus. 
Permafrost-free peatlands, typically include collapse 
scar wetlands and channel fens (Holloway and 
Lewkowicz 2020). Peat plateaus rise 1-2 m above their 
adjacent permafrost-free peatlands (Vitt et al. 1994) 
and are therefore relatively well-drained and possess 
well-developed unsaturated layers, while the water 
table of adjacent peatlands remains at or near the 
ground surface. The relatively dry peat plateaus may 
not have met the early definition of “wetland” 
(Tarnocai 1980), but the current definition using the 
Canadian Wetland Classification System (NWWG 
1997) simply requires the surface be sufficiently wet 
to induce hydric soils and vegetation adapted to a wet 
environment. The presence of peat attests to this. The 
relatively dry peat plateaus support a tree cover, while 
adjacent wetlands are largely treeless (NWWG 1988). 
The unsaturated layer of peat plateaus acts as an 
effective thermal insulator that promotes permafrost 
even where the mean annual air temperature is above 
0� C (Camill 2005). The elevation of the upper sur
face of permafrost is greater than the water table of 
the adjacent wetlands and for this reason, peat pla
teaus are often referred to as ‘permafrost dams’ since 

they can effectively impound wetlands (Kurylyk et al. 
2016; Quinton et al. 2019).

Peat plateaus and collapse scar wetlands (hereafter 
‘collapse scars’) are typically arranged into distinct 
plateau-wetland complexes separated by channel fens 
(Aylsworth et al. 2000). Peat plateaus follow a con
tinuous cycle of development initiated by ice bulb for
mation and displacement of the wetland ground 
surface, and eventually, decay driven by thermokarst 
processes (Zoltai 1993). In a stable climate, this cycle 
transforms tree-covered plateaus into treeless, perma
frost-free collapse scars, and back into plateaus over a 
period of centuries (Treat and Jones 2018). 
Permafrost below mature plateaus is on the order of 
10 m thick (McClymont et al. 2013) with nearly verti
cal edges (Hayashi et al. 2004). Plateaus function pri
marily as runoff generators, with water conveyed 
mainly through the thawed, saturated layer separating 
the water table from the relatively impermeable, slop
ing frost table (Wright et al. 2009). Peat plateaus have 
two distinct runoff source areas (Connon et al. 2014). 
Primary runoff drains the sloped edges of plateaus 
directly into the basin drainage network (i.e. channel 
fens or stream channels) throughout the thaw season. 
Secondary runoff is neither direct nor continuous 
(Connon et al. 2015) as it enters the drainage network 
indirectly through an intervening wetland or wet
lands. Since collapse scars are surrounded by raised 
permafrost, their hydrological function is typically 
considered to be one of water storage (Quinton et al. 
2003). Fens collect water from their adjacent plateau- 
wetland complexes and route it along their broad, 
hydraulically rough channels (Hayashi et al. 2004) in 
a manner consistent with roughness-based algorithms 
(Kurylyk et al. 2016). Because each of the major peat
land types have characteristic hydrological functions, 
basins with different proportions of these peatland 
types produce different hydrograph responses 
(Connon et al. 2015), and likewise, widespread trans
formations of one peatland type to another within a 
single basin has the potential to alter the basin 
hydrograph.

The majority (>85%) of the energy flux conducted 
vertically into the plateau peat profile is partitioned 
toward melting ice by lowering the frost table 
(Hayashi et al. 2007). During ground thawing, the 
frost table separates the thawed and frozen portions 
of the active layer, and closely approximates the zero- 
degree isotherm (Woo 1986). The depth dependency 
of hydraulic conductivity and the nearly impermeable 
nature of the frost table makes the degree of active 
layer thaw a primary factor controlling the rate of 
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subsurface flow. However, spatial variations of thaw 
depth result in a frost table ‘topography’ that varies 
over time and space, and as a result, the rates and 
directions of subsurface flow also change over time 
and space (Wright et a., 2009). Water drains toward 
frost table depressions, leading to local areas of 
increased wetness. Since wet peat conducts energy 
from the ground surface to the frost table with greater 
efficiency than drier peat (Hayashi et al. 2007), local
ized wet areas are also areas of preferential ground 
thaw, and such wet areas tend to expand and coalesce 
over the summer period as thaw depths and therefore 
local hydraulic gradients increase (Ackley et al. 2021). 
The rates and directions of subsurface drainage vary 
over time as the active layer thaws, a process which 
re-distributes soil moisture and nutrients, while influ
encing vegetation cover (Van Huizen and Petrone 
2020; Waddington et al. 2015). Further, work by Van 
Huizen et al. (2020) has shown that in non- 
permafrost peatlands, seasonal ground ice has signifi
cant energy and drainage implications, which affect 
ET during the snowmelt and snow-free periods.

iv) hydrological drivers of wetland biogeochemistry
Wetland biogeochemistry research in Canada over the 
past 75 years has been extensive and worthy of a 
lengthy review on its own. Therefore, here we focus 
on hydrological drivers of wetland nutrient retention 
and dissolved organic carbon export, and the response 
of carbon and nutrient cycling to water table manipu
lation. Carbon storage and greenhouse gas exchange 
are important ecosystem functions performed by wet
lands, with the large stocks of carbon accumulated in 
wetland soils, mainly peatlands, providing climate- 
regulating services (Helbig et al. 2020a; Roulet 2000). 
Further, wetlands act as hotspots for biogeochemical 
cycling (Cheng and Basu 2017), often resulting in 
nutrient retention (e.g. Devito and Dillon 1993) 
and hydrological export of dissolved organic carbon 
(DOC) (e.g. Fraser et al. 2001a; Moore 2009; 
Strack et al. 2008; Waddington and Roulet 1997). 
Hydrological conditions, including hydroperiod, mean 
and variability in water table position, and soil mois
ture content, control the rate of wetland biogeochem
ical cycling, both as drivers of plant productivity and 
microbial activity. Wetland connectivity and total dis
charge are also key drivers of nutrient and carbon 
exports. It is then not surprising that many studies of 
wetland biogeochemistry include hydrological meas
urements and vice versa (Price and Waddington 
2000).

Wetland nutrient retention and DOC export
By the 1970s wetlands were identified as potential 
sites for nutrient retention; however, few nutrient 
budgets had been conducted. Once measurements of 
both inorganic and organic forms of nutrients were 
considered, it was noted that the role of wetlands in 
nutrient retention was more complicated. Wetlands 
may retain nutrients in some forms while exporting 
others (Rutledge and Chow-Fraser 2019), indicating 
their role as sites of nutrient transformation. The 
pathway of water flow through the wetland also 
affects retention (Hill 1993). For example, Gehrels 
and Mulamoottil (1989) observed net retention of 
total phosphorus (TP) in a Typha marsh in south
western Ontario, but groundwater exported TP while 
surface flow resulted in retention; orthophosphate was 
exported from the site. Similarly, although wetlands 
are generally sinks for inorganic N, they can be sour
ces of organic N with variation in space and time 
depending on hydrological connections within the 
wetland and with the catchment (Devito et al. 1989). 
Further, wetland connectivity to the stream may be 
important for predicting nutrient export. Casson et al. 
(2019) observed that near-stream wetland area was a 
better predictor of NO3 export than total catchment 
wetland area across 10 forested catchments on the 
Canadian Shield, suggesting that connection to the 
stream was important; however, total phosphorus and 
DOC export were better predicted by total wetland 
area. Overall, during low flow periods wetlands tend 
to act as sites for nutrient retention while export is 
more likely to occur as discharge increases (Devito 
et al. 1989; Devito and Dillon 1993). Therefore, snow
melt is generally a period of nutrient export from 
wetlands (Burd et al. 2018; Eimers et al. 2009). That 
said, the presence of wetlands (or other storage fea
tures) can reduce total catchment nutrient export dur
ing high flow periods by reducing peak flow 
(D’Amario et al. 2021).

The role of wetlands as hotspots of biogeochemical 
transformations as mediated by hydrology (Lam et al. 
2022) is further illustrated by work on sulphur and 
mercury cycling. The transformation of inorganic 
mercury into methylmercury (MeHg), the far more 
mobile and bioavailable form, is conducted by sul
phate-reducing bacteria and is thus closely linked to 
redox conditions that will vary with water table fluc
tuations and inputs of organic substrates and ions 
(Branfireun et al. 1999; Branfireun and Roulet 2002; 
Mitchell et al. 2008). Groundwater discharge areas in 
wetlands can provide a source of sulphate; thus, 
higher methylmercury porewater concentrations have 
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been observed where groundwater recharge predomi
nates in both temperate Ontario wetlands and boreal 
sites in the Northwest Territories (Branfireun et al. 
1996; Branfireun and Roulet 2002; Gordon et al. 
2016). However, hydrological flowpaths will also affect 
interactions of sulphate-rich water from upland 
(Devito and Hill 1997; Mitchell et al. 2008) or 
anthropogenic (McCarter et al. 2017a) sources with 
organic rich peatland soils. Devito and Hill (1997) 
observed minimal sulphate reduction during high 
flow periods in swamps on the Canadian Shield as 
surface flow predominated and interactions with 
anoxic peat were limited, while McCarter et al. 
(2017a) observed higher MeHg concentrations within 
a point-source sulphate plume associated with flow 
through peat and lower concentrations within pools 
of a ladder fen in the James Bay Lowland. In addition 
to water source, water table fluctuation within wet
lands contributes to sulphur and mercury cycling and 
subsequent export. Studies across temperate wetlands 
in Ontario have shown that water table drawdown 
results in increased sulphate availability through oxi
dation (Eimers et al. 2008; McLaughlin and Webster 
2010) and this can contribute to higher rates of mer
cury methylation and thus export of both sulphate 
(Devito and Hill 1997; Eimers et al. 2007; Schiff et al. 
2005; Szkokan-Emilson et al. 2013; Warren et al. 
2001) and MeHg upon rewetting (Galloway and 
Branfireun 2004). McCarter et al. (2022) determined 
that hydrological flushing of a catchment-scale experi
mental atmospheric sulphate addition decreased sur
face water MeHg concentrations by �25% once 
sulphate additions ceased, with the other 75% due to 
changes in net demethylation and MeHg sorption.

Several studies across Canada, from Temperate to 
Subarctic regions, have reported the strong predictive 
power of the proportion of wetland in the catchment 
for DOC export (Casson et al. 2019; Dillon and 
Molot 1997; Eckhardt and Moore 1990; Koprivnjak 
and Moore 1992; Li et al. 2015; Richardson 2012). 
Therefore, improving identification of wetlands within 
forested areas (i.e. ‘cryptic wetlands’ that may have 
similar vegetation to the surrounding uplands), can 
improve estimates of catchment DOC export (Creed 
et al. 2003). This clearly indicates the importance of 
wetlands as a source of DOC to streams and receiving 
water bodies (Hillman et al. 2004).

As with nutrient and metal export, hydrological 
conditions are also key drivers of DOC export from 
wetlands by controlling source areas for streamflow 
and total discharge. Discharge may be either posi
tively (Fitzgerald et al. 2003; Hinton et al. 1998), 

negatively or not correlated (Hinton et al. 1997) to 
DOC concentration, with the difference linked to 
whether high flow conditions connect water sources 
from organic rich wetlands to the stream or increase 
contributions from mineral soil horizons (Schiff et al. 
1997); rainfall and snowmelt events also dilute DOC 
concentrations (Emili and Price 2013). Regardless of 
changes to concentration in response to flow condi
tions, DOC export is dominated by high flow periods 
including snowmelt (Shatilla and Carey 2019; 
Waddington et al. 2008) and storm events (Hinton 
et al. 1997). Thus, drought conditions tend to limit 
DOC export (Eimers et al. 2008) and total discharge 
is an important control on total DOC export from 
wetland ecosystems (Fraser et al. 2001a; Moore 2003; 
Waddington et al. 2008)

Response of carbon and nutrient cycling to water 
table manipulation
Carbon accumulation in wetlands occurs largely due 
to the slow decomposition associated with the anoxic 
conditions that arise in saturated sediments or soils. 
Therefore, water table position is a strong predictor 
of net carbon exchange and methane emissions (e.g. 
Moore and Roulet 1993; Price and Waddington 
2000). Studies using peat cores have shown strong 
relationships between water table position and C 
cycling with drier conditions resulting in higher CO2 

emissions, lower CH4 emissions and higher pore 
water DOC concentrations (Blodau et al. 2004; Moore 
and Dalva 1993; Moore and Knowles 1989). 
Comparable results have been reported from sites 
affected by drainage in southern Qu�ebec and northern 
Ontario (Glenn et al. 1993; Roulet et al. 1993).

As non-permafrost wetlands in Canada are pre
dicted to experience drier conditions under climate 
change (Helbig et al. 2020b; Roulet et al. 1992), field 
scale water table drawdown experiments have also 
been used to predict wetland responses to climate 
warming. Shifts in carbon cycling driven by drier soil 
conditions that enhance organic matter decompos
ition and methane oxidation are partially offset by 
changes to the wetland plant community (Munir 
et al. 2015; Strack et al. 2006; Strack and Waddington 
2007; Waddington et al. 1998). These plant commu
nity shifts are also dependent on small-scale variations 
in initial moisture conditions within the wetland aris
ing from microtopography; initially wet areas in moist 
temperate peatlands in southern Qu�ebec experienced 
an increase in plant productivity that maintained or 
enhanced both net C uptake and CH4 emissions fol
lowing water table drawdown (Strack et al. 2004; 
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Strack and Waddington 2007). In contrast, forested 
continental bogs in northern Alberta experienced an 
increase in tree and shrub growth in response to a 
lowered water table and resulting increase in nutrient 
availability (Munir et al. 2014, 2017), but this was not 
enough to offset soil carbon losses unless sites also 
experienced soil warming treatments (Munir et al. 
2015).

v) wetland disturbance
Disturbance to Canadian wetlands occurs extensively 
through climate-mediated disturbances such as wild
fire and permafrost thaw (Wilkinson et al. 2023), 
regionally through resource extraction activities such 
as oil and gas operations (Volik et al. 2020), and 
locally through drainage for forestry (Silins and 
Rothwell 1998), agriculture (Walters and Shrubsole 
2003), urbanization (Birch et al. 2022), peat extraction 
(Price et al. 2003), and road construction (Bocking 
et al. 2017). Intensity of these disturbances range 
from complete loss of wetlands removed for open pit 
mining (Rooney et al. 2012), to loss or change in 
hydrological function caused by disturbance (Webster 
et al. 2015). The extent and impact of the change on 
ecosystem function depends on the nature of the dis
turbance and of the resilience of the peatland to 
change (Harris et al. 2020). Given that the vast carbon 
store in Canadian peatlands provide essential ecosys
tem services for global climate (Harris et al. 2022), 
the ecohydrological resilience of peatlands to disturb
ance thus impacts a range of spatial and temporal 
scales, often in complex manners (Morris et al. 2011). 
As such, the magnitude and direction of the response 
of peatlands to land-use and climate change are diffi
cult to assess with confidence (Harris et al. 2022; 
Moore et al. 1998). Nevertheless, with respect to peat
lands, the general persistence of many ecosystem 
functions, for example their ability to continue as a 
net carbon sink in response to disturbance, has 
generally resulted from the ability of peatlands to 
regulate their water content (McCarter et al. 2020; 
Waddington et al. 2015). This self-regulation allows 
peatlands to sustain a high degree of wetness that 
dampens system instabilities that could result in eco
hydrological collapse (Kettridge et al. 2015), and 
release of globally important carbon stocks 
(Harris et al. 2022; Wilkinson et al. 2018). We refer 
to the interaction of peat hydrophysical properties 
(McCarter et al. 2020; Rezanezhad et al. 2016) and 
peatland ecohydrological feedbacks (e.g. Waddington 
et al. 2015) in resisting a change in peatland form 
and function (e.g. long-term carbon storage) as 

peatland ecohydrological resilience to disturbance (see 
Waddington et al. 2015).

Canadian researchers have made important scien
tific contributions to understanding the interaction of 
moss traits, peat hydrophysical properties, and ecohy
drological feedbacks that maintain near-surface wet
ness of northern peatlands (e.g. McCarter et al. 2020; 
Rezanezhad et al. 2016; Waddington et al. 2015). 
Many of the water table depth (WTD)-ecohydrologi
cal feedbacks reviewed by Waddington et al. (2015) 
are connected to foundational Canadian hydrological 
research including those with: i) afforestation and/or 
shrubification feedback (Farrick and Price 2009; 
Landh€ausser et al. 2003; Lieffers and Rothwell 1987; 
Moore et al. 2022), ii) moss surface resistance and 
albedo feedback (Kettridge and Waddington 2014; 
Lafleur et al. 2005; Price et al. 2009), iii) transmissiv
ity feedback (Fraser et al. 2001b; McCarter et al. 
2020), iv) peat deformation feedback (Kellner et al. 
2003; Price 2003; Price and Schlotzhauer 1999), v) 
specific yield feedback (Price 1992), vi) peat decom
position feedback (Morris and Waddington 2011; 
Strack et al. 2005), and vii) moss productivity feed
back (McCarter and Price 2014; Thompson and 
Waddington 2008). Canadian research has also high
lighted that the negative feedbacks (which act to mod
erate water table changes) outnumber the positive 
feedbacks (which act to amplify water table changes) 
and thereby generally contribute to peatland ecohy
drological resilience to disturbance. While the 
strength of the ecohydrological feedbacks varies by 
peatland type and climate (see Waddington et al. 
2015 for review), recent research suggests that deeper 
peatlands may have stronger negative and autogenic 
ecohydrological feedbacks (e.g. Moore et al. 2021; 
Wilkinson et al. 2020a, 2020b) and by extension 
greater ecohydrological resilience to disturbance 
(Morison et al. 2020). This ‘survival of the deepest’ 
resilience depth (or range of depths) threshold con
cept where peatland depth may be a key indicator of 
peatland vulnerability to disturbance (e.g. Hilbert 
et al. 2000) is likely to vary with hydrogeological and 
hydroclimatic setting and disturbance type. With this 
ecohydrological resilience lens in mind we review 
Canadian peatland research on the resistance, resili
ence, and vulnerability of northern peatlands to the 
major disturbances, especially as caused by climate 
change, wildfire and peat extraction.

Permafrost thaw-induced disturbance
In Canada’s Arctic and Subarctic regions, permafrost 
thaw is a leading cause of wetland disturbance owing 
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to rising air temperatures since the 1970s (Biskaborn 
et al. 2019a, 2019b). The rates and patterns (Beilman 
and Robinson 2003; Nitze et al. 2018; Thie 1974) and 
mechanisms (Devoie et al. 2021; Gibson et al. 2018) 
of permafrost thaw-induced change to peatlands have 
been quantified, and new methods of detecting 
permafrost degradation using a combination of aerial 
photographs, satellite remote sensing and LiDAR were 
developed (Chasmer and Hopkinson 2017). 
Permafrost is particularly susceptible to rapid thaw 
and disappearance in the Subarctic (Richter-Menge 
et al. 2017) where it is relatively thin, and its tempera
ture is already near the melting point. Thaw-induced 
fragmentation of plateaus accelerates thaw rates of the 
underlying permafrost (Chasmer and Hopkinson 
2017), which involves simultaneous lateral recession 
of permafrost edges and lowering of the permafrost 
table (Devoie and Craig 2019). As permafrost thaws, 
the overlying plateau ground surface subsides (Smith 
et al. 2008), a process that ultimately removes the 
topographic gradient between plateaus and adjacent 
wetlands, inundates the plateau ground surface, and 
transforms it into a permafrost-free, treeless wetland 
(Camill 1999) or thermokarst lake (Sannel and Kuhry 
2011). Since peatland form exerts a primary control 
on peatland hydrological function, such a transform
ation can affect water flow and storage processes 
within the transformed peatland, between it and adja
cent peatlands, and potentially affect the basin hydro
graph (Connon et al. 2018). Since permafrost thaw 
occurs to varying degrees throughout the circumpolar 
region (Kwong and Gan 1994; Romanovsky et al. 
2010; Biskaborn et al. 2019a, 2019b), the resulting 
peatland transformations and hydrological impacts 
are potentially widespread (Hinzman et al. 2013; St. 
Jacques and Sauchyn 2009; Walvoord and Kurylyk 
2016).

In Canada, the transition from plateau forest to 
permafrost-free forest has occurred in less than half a 
century, far faster than the process of forest re-estab
lishment described by Zoltai (1993), which depends 
on permafrost regrowth. Canadian researchers have 
shown that the former involves several distinct stages 
that alter the ecohydrological environment and intro
duce new processes and feedbacks (Carpino et al. 
2021). These include wetland capture (Connon et al. 
2014), talik development (Devoie et al. 2019b), partial 
drainage of captured wetlands (Haynes et al. 2018), 
development of sphagnum hummocks and their col
onization by tree saplings (Haynes et al. 2021) and 
coalescence of treed hummocks to form a continuous 
tree cover (Disher et al. 2021). However, each of these 

processes are subject to disturbances such as wildfires, 
which can alter ground thermal regimes (Smith et al. 
2015) and accelerate permafrost thaw (Gibson et al. 
2018).

Research in the southern Northwest Territories has 
shown that as the permafrost separating wetlands 
thaws, ephemeral channels form over the subsiding 
ground surface (Connon et al. 2014) enabling water 
to cascade from one wetland to the next as storage 
thresholds are exceeded. This wetland capture process 
effectively taps water stored in the interior of plateau- 
wetland complexes, thereby increasing the contribu
tion of secondary runoff to the basin drainage net
work. In the Northwest Territories it was shown that 
wetland cascades often function as ecotones with 
ombrotrophic wetlands at their headwaters in the 
plateau-wetland complex interior, and minerotrophic 
wetlands lower in the cascade sequence (Gordon et al. 
2016). Permafrost monitoring demonstrated a transi
tion from stable to thawing permafrost after a thresh
old summer thaw depth of between 0.6 and 0.8 m is 
exceeded (Connon et al. 2018). It was also found that 
once a talik forms, the permafrost thaw rate increases 
five-fold, suggesting that talik formation is a ‘tipping 
point’ that accelerates thaw (Devoie et al. 2019b). The 
occurrence of taliks in Canadian peatlands has 
increased over the last decade (O’Neill et al. 2020) 
and they are now a common feature of high-boreal 
peat plateaus and particularly prevalent below linear 
(i.e. seismic) disturbances (Braverman and Quinton 
2016; Smith and Riseborough 2010; Williams et al. 
2013) and peatlands disturbed by wildfire in recent 
decades (Gibson et al. 2018). Unlike other hydro
logical pathways, taliks conduct water throughout the 
year. Permafrost thaw induced peatland transform
ation therefore introduces new hydrological pathways 
that connect to new runoff source areas and offers a 
plausible explanation for trends of increasing annual 
basin discharge initially reported by St. Jacques and 
Sauchyn (2009).

Effects of disturbance on evapotranspiration
Work on Canadian wetlands, especially in the Boreal 
zone, has shown that the effects of disturbance on 
ET, soil moisture distribution, lateral hydrological 
fluxes between landscape units, and feedbacks are 
complex and often extend beyond the visual bounda
ries of the wetland (Plach et al. 2016; Waddington 
et al. 2015). Early on, Woo (1992) demonstrated that 
long-term climatic warming will alter many physical 
attributes of wetlands, leading to earlier snowmelt, 
higher evapotranspiration, and lowering of the water 
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table. However, the impacts will vary for wetlands in 
different parts of Canada (Woo 1992). For example, 
in subhumid regions, it is likely that peatland-upland 
forest hydrological interactions have allowed a peat
land-dominated landscape to overcome available 
moisture limitations and develop and persist in a 
region of frequent and prolonged (multi-annual) 
drought periods (Devito et al. 2005)

In general, work has shown that the relationship 
between transpiration, soil moisture, and water table 
are controlled by vegetation and canopy conditions 
(van der Kamp and Hayashi 2009; Warren et al. 
2018). These relationships form the basis of within- 
peatland (autogenic) feedbacks that control ecohydro
logical – climatic interactions (Blanken and Rouse 
1996; Waddington et al. 2015) and are important to 
larger-scale climatic interactions and responses to 
external disturbance. Understanding this interaction is 
especially important, as hydrological conditions in 
peatlands change in response to climate or disturb
ance, where peatland tree cover can change in density 
and composition (increased productivity, encroach
ment, etc.) (Pellerin and Lavoie 2003; Ropars and 
Boudreau 2012). Tree density within a peatland influ
ences surface roughness, determined by the structure 
of the forest canopy and individual trees (Strilesky 
and Humphreys 2012). Thus, stands with differing 
tree compositions (i.e. deciduous, coniferous) but the 
same height will interact with the wind field differ
ently, because the level of active exchange with the 
atmosphere for each type of tree is different (Green 
et al. 2021, 2022). As peatland tree growth increases, 
surface roughness increases and aerodynamic resist
ance decreases (Moore et al. 2013), until the canopy 
becomes so dense that it becomes aerodynamically 
smoother (Waddington et al. 2015). As such, strong 
links are observed among water use efficiency, tree 
cover density, composition and age and water table 
dynamics, which creates the potential for drying due 
to the water table depth-afforestation feedback 
(Humphreys et al. 2006).

Understanding internal and external feedbacks and 
processes that permit wetland/peatland ecosystems to 
efficiently use available moisture while maintaining 
maximum productivity is important for managing 
these systems considering climate and land-use 
change (Rooney et al. 2015) and reclamation 
(Ketcheson et al. 2016). Literature suggests that mass 
and energy exchange are strongly influenced by local 
boundary layer conditions and biophysical controls 
(Plach et al. 2016; Solondz et al. 2008). Further, the 
landscape mosaic of peatlands and forests in much of 

the Boreal suggests that not only is there a hydrologic 
synergy between these landscape units, but that 
uplands provide a mechanism to moderate evapo
transpiration losses in the high atmospheric demand 
climate (Brown et al. 2010). Landscape heterogeneity, 
ground surface morphometry, tree density and height, 
and orientation of forested hummocks (with respect 
to aspect and dominant wind direction) shelter adja
cent peatlands limiting their evapotranspiration 
(Green et al. 2021, 2022).

Wildfire
Wildfire represents the largest areal direct disturbance 
of Canadian peatlands (Turetsky et al. 2002) and 
Canadian wildfire and wetland scientists have made 
significant contributions to the understanding of the 
ignition, combustion vulnerability (Waddington et al. 
2012) and ecosystem recovery of peatlands. While 
much of this research has been carried out in the sub
humid Boreal Plains of Alberta, all these processes are 
directly and indirectly controlled by ecohydrological 
processes (Lukenbach et al. 2016; Wilkinson et al. 
2019) and the peatland water balance (Elmes et al. 
2018). Peat fires are dominated by smouldering com
bustion (Frandsen 1987; Thompson et al. 2015a) and 
the propagation of smouldering combustion is con
trolled by the ratio of energy sink to fuel source, 
which can be approximated with gravimetric water 
content (GWC) (Benscoter et al. 2011; Lukenbach 
et al. 2015a). As such, peat wildfire combustion is 
controlled by the cross-scale variability in peatland 
water balance (Elmes et al. 2019), hydrological con
nectivity (Hokanson et al. 2016, 2018), peat hydro
physical properties (Thompson and Waddington 
2013a) and moss species (Wilkinson et al. 2019). In 
general, natural peatlands have low ignition and peat 
combustion potential given their ability to maintain a 
wet near-surface and the presence of generally low- 
density surface mosses, litter, and peat. (e.g. Benscoter 
et al. 2011; Lukenbach et al. 2015a). However, peat 
combustion in some peatland types (e.g. peat swamps, 
peatland margins and drained peatlands) can be very 
high to extreme (e.g. Granath et al. 2016) as these 
peatlands are not only denser (greater fuel source) 
but are also drier during periods of drought as mani
fested through the WTD-specific yield feedback 
(Elmes et al. 2018; Nelson et al. 2021; Wilkinson et al. 
2018). Hokanson et al. (2016) found that peat burn 
severity was higher in Boreal Plains peatlands with 
lower groundwater connectivity suggesting that peat
land hydrogeological setting can be used to identify 
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peat smouldering hotspots (Hokanson et al. 2018; 
Wilkinson et al. 2019).

The resilience of peatland form and function to 
wildfire is ultimately determined by the ability of 
burned peatlands to recover the carbon lost from 
combustion within the fire return interval (Ingram 
et al. 2019). While deep peat burning has generally 
been shown to be counterbalanced by rapid moss 
recolonization in Alberta peatlands, as the post-fire 
peat surface is closer to the water table and has higher 
moisture content and lower soil water tension 
(Lukenbach et al. 2015b). Kettridge et al. (2015) found 
that extreme burn severity in the Salteaux peatland 
near Slave Lake, Alberta can result in an ecohydrolog
ical regime shift. As such, Canadian researchers have 
determined that peatland ecohydrological resilience to 
wildfire is non-linearly controlled by the relative 
change in peatland water balance and peat hydro
physical properties (Lukenbach et al. 2017; Nelson 
et al. 2021) due to changes in peat burn severity (e.g. 
Sherwood et al. 2013). For example, while the net 
change in water storage can be largely unchanged by 
wildfire (Thompson et al. 2014) the variability in 
peatland water table generally increases following 
wildfire due to the burning of low-density, high spe
cific yield surface peat (Thompson and Waddington 
2013b). Evapotranspiration tends to dominate water 
loss from northern peatlands (Lafleur et al. 2005; 
Petrone et al. 2007), and although the available energy 
for evapotranspiration increases post-fire (Thompson 
et al. 2015b) the removal of the canopy and under
story restricts transpiration causing evaporation to 
dominate post-fire ET. Nevertheless, evapotranspir
ation increases only marginally following wildfire 
(Thompson et al. 2014) due to the capability of a 
burned peatland to regulate ET following wildfire - a 
key control on peatland ecohydrological resilience.

Following wildfire, moss and near-surface peat 
often develop fire-induced hydrophobicity (Elmes 
et al. 2019; Kettridge et al. 2014; Moore et al. 2017). 
Post-fire hydrophobicity has been found to increase 
with decreasing moisture content, highlighting the 
importance of moss moisture retention properties 
(Moore et al. 2017). Sphagnum moss moisture con
tent, especially hummock-forming species such as 
Sphagnum fuscum (McCarter and Price 2014), tends 
to be comparatively high, leading to lower burn sever
ity (Hokanson et al. 2016), very low to no water 
repellency (Moore et al. 2017) and fast post-fire 
recovery (i.e. ecohydrologically resilient) (Lukenbach 
et al. 2017) relative to feather mosses (Kettridge et al. 
2014). In peat and moss, where moisture content is 

low following wildfire, the post-fire hydrophobic layer 
can act as a barrier to the upward transfer of water 
for evaporation (Kettridge et al. 2017) with surface 
resistance to post-fire evaporation and at the peat
land-scale correlated non-linearly with near-surface 
tension (Kettridge et al. 2021). This hydrophobicity– 
evaporation feedback (Wilkinson et al. 2020a, 2020b) 
promotes moss recovery (Lukenbach et al. 2017) and 
ecohydrological resilience (Kettridge et al. 2017, 
2019). However, in peatlands with high burn severity 
where hydrophobicity is low (Wilkinson et al. 2020) 
or even decreases in the uppermost layer due to wild
fire (Elmes et al. 2019), this water conservation feed
back breaks down (Wilkinson et al. 2020). As such, 
extreme peat burn severity due to drainage (Granath 
et al. 2016; Wilkinson et al. 2018) or to future peat
land drying (Helbig et al. 2020b) enhances post-fire 
drying and reduces ecohydrological resilience 
(Kettridge et al. 2015) to wildfire. McCarter et al. 
(2021) found that the depth of peat extraction (com
parable to different depths of burn, i.e. the removal of 
peat from the profile from extraction or burning) led 
to divergent post-fire soil water conditions in the 
Wainfleet Bog in southern Ontario. Therefore, on 
abandoned extracted peatlands sphagnum recovery 
and peat re-ignition potential is altered. This high
lights the complex interactions multiple disturbances 
(drainage, extraction and wildfire) have on peatland 
ecohydrology.

Peat extraction and restoration
Canadian research has highlighted that while peat
lands are generally ecohydrologically resilient to single 
disturbances, multiple compounding disturbances (e.g. 
drainage and wildfire, drainage and harvesting) often 
lead to a loss of peatland function and regime shift 
(Kettridge et al. 2015; McCarter et al. 2021; Sherwood 
et al. 2013; Waddington et al. 2002). Following these 
ecohydrological tipping points, active peatland restor
ation or reclamation is often required (Poulin et al. 
2005). Restoration of peatland functions following 
peat extraction can return them to carbon sinks 
(Nugent et al. 2018) and has the potential to mitigate 
carbon loss from wildfire combustion (Granath et al. 
2016; McCarter et al. 2021).

Peat extraction began in Canada in the 1940s 
(Daigle et al. 2001), but prior to a publication by 
Keys (1992) there was little or no documented recog
nition of the need for restoration, nor any systematic 
attempt or method for doing so. In Canada, peat was 
initially extracted for use as a fuel, but from the 1900s 
onward has primarily been for its use as a 
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horticultural amendment (Warner and Buteau 2000). 
A major challenge for restoration practitioners is that 
extracted peatlands present a paradoxical scenario 
where the peatlands, in which peat was extracted to 
be used as a growing medium, are inhospitable to the 
reestablishment of peat-forming vegetation (Price 
et al. 2003), notably sphagnum mosses (Rochefort 
2000). The switch from manual block-cutting to 
mechanical harvesting in the 1970s increased the hos
tility of the extracted surface to plant re-establishment 
because of the harsher hydrological environment with 
respect to plant water-supply, distance from propa
gules, deeper drainage ditches and fewer ecological 
niches (Price et al. 2003). Very little work was com
pleted on peatland restoration in Canada until the 
1990s when the Peatland Ecology Research Group 
was formed, based out of Universit�e Laval, which 
comprised an interdisciplinary team of scientists (not
ably Line Rochefort, Jonathan Price, and Mike 
Waddington). Over the next decade their research 
grew in scale from plot and lab experiments, culmi
nating in the ecosystem-scale restoration of the now 
well-documented �8 ha Bois de Bel (BDB) peatland 
in Qu�ebec, and with it the development of the Moss 
Layer Transfer Technique (MLTT) (Rochefort et al. 
2003). It was reasonable to assume before trials began 
that maintaining adequate soil moisture (and water 
table) was important, thus various efforts to reduce 
hydrological stress at the site, such as ditch-blocking 
(Price 1997), pond creation (Price et al. 2002), field 
reprofiling (Bugnon et al. 1997), and bund creation 
(Shantz and Price 2006), were employed with varying 
degrees of success. The key hydrological discovery 
was that rewetting (the water retention strategies) 
alone was not enough. This is because despite block
age of ditches, the frozen cutover surface quickly shed 
snowmelt water because surface water detention was 
low (Shantz and Price 2006) and late spring and sum
mer evaporative demands were high (Petrone et al. 
2001; Price 1997). To address this, straw mulch was 
used to cover donor moss, which helped increase the 
surface albedo (to reduce solar heating) and relative 
humidity (to lower the vapour pressure deficit) at the 
boundary layer (Price et al. 1998), making the surface 
more hospitable for moss regeneration. At the same 
time, Price and Whitehead (2001), using a nearby 
block-cut peatland in Qu�ebec that had some natural 
peatland revegetation present, established that sphag
num mosses occupied areas only where soil-water 
pressures remained higher than −100 cm, which is 
now a key metric for restoration practitioners. Van 
Seters and Price (2001) found that runoff was 

significantly higher than a nearby natural peatland, 
highlighting the need for active restoration efforts 
(e.g. ditch blocking) to restore the hydrological func
tion of the site.

In the intervening two decades since its restoration, 
researchers continue to study BDB, and other sites, to 
refine the MLTT, which is now used broadly in 
North America (see Gonzalez and Rochefort 2019) to 
restore bog peatlands. Recent work at BDB has dis
covered a hydraulic disconnect between the newly 
established moss carpet and the underlying remnant 
peat, such that a capillary barrier restricts water from 
reaching the moss capitula at the surface (McCarter 
and Price 2015). Recent studies have investigated squ
ishing or compressing the moss layer to reduce pore 
sizes to weaken the capillary barrier effect (Gauthier 
et al. 2022). Golubev and Whittington (2018) quanti
fied how artificial compression increased the unsatur
ated hydraulic conductivity, while simultaneously 
decreasing the saturated hydraulic conductivity. Given 
the broad effectiveness of MLTT for returning peat
land function, its application as soon as possible after 
peat extraction operations cease can drastically 
decrease the time for the restoration site to become a 
net greenhouse gas sink (Nugent et al. 2019). MLTT 
has now also been applied for the restoration of other 
disturbances such as well-pads in the Alberta oil 
sands region (Engering et al. 2022) and roads in 
Qu�ebec (Pouliot et al. 2021) following appropriate site 
preparation.

While the MLTT has had success for bog restor
ation, attempts to modify the methodologies for fen 
restoration are underway (Hawes 2018; LeBlanc et al. 
2012; Lobreau n.d.; Malloy and Price 2014). As bogs 
succeed from fens, peat companies will often stop 
extraction at a site when the depth to fen (sedge) peat 
is reached; as such, restoration towards fen might be 
more appropriate. As fens also have a more compli
cated hydrology than bogs, one such consideration 
being used is to create artificial ecotones between the 
peat extraction site and the surrounding natural peat
land or upland forest to encourage the flow of water 
and nutrients from the surrounding area to support 
the restoration site (Yamoah 2023). The importance 
of natural ecotones, also called laggs, has received 
increased study recently as well (Howie and Van 
Meerveld 2011; Paradis et al. 2015) and highlight how 
these zones have distinct hydrological and hydro
chemical gradients (Langlois et al. 2015a, 2015b, 
2017) that support specific plant communities.

Not all peatland restoration projects in Canada 
have used the MLTT, since various other land uses 
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(such as for agriculture or forestry) have occurred. 
One such site, the �3000 ha Burns Bog in lower 
mainland BC (Howie et al. 2009a, 2009b; Howie and 
Van Meerveld 2011), has a rich history of disturban
ces and has made notable progress in its restoration, 
which has largely focused on rewetting from hand- 
built dams (nearly 500), a 100 m long underground 
wall (sheet piling) at the bog edge, and removing tree 
seedlings after an area of the bog burned. Peatlands 
are also impacted by ‘natural’ disturbances, such as 
beaver activity, which have required researchers to 
consider fen restoration as part of landscape manage
ment (Westbrook et al. 2017).

While much of the hydrological restoration litera
ture in Canada has been focused on peatlands, impor
tant advances in the hydrology of mineral wetland 
restoration, focusing mostly on Prairie sloughs, also 
exists. The mentality that ‘a drained wetland is a good 
wetland’ was prevalent across much of western 
Canada as settlement/agriculture moved westward 
with estimates that 70% have been lost (Lands 
Directorate 1986), the most impacted wetland being 
the iconic prairie pothole or slough. These wetlands, 
that cover the southern parts of the provinces of 
Alberta, Saskatchewan and Manitoba (and USA states 
of North and South Dakota and Iowa), are home to 
�50-70% of North American waterfowl (Smith et al. 
1964) and represent an important carbon store (Euliss 
et al. 2006). Despite this, these systems are still under
valued by society, and as such, understudied (Badiou 
et al. 2011). Therefore, the need for pothole restor
ation has gained traction in recent years; in particular, 
for their role in both flood and drought protection 
and prevention (Goyette et al. 2023). Spence et al. 
(2022) note that the drainage of these wetlands 
increases their hydrological connectivity in the land
scape, and thus how they contribute to runoff during 
rain and snowmelt events. Goyette et al. (2023) used 
HYDROTEL (a semi-distributed hydrological model) 
to test wetland restoration scenarios on peak and low 
flows. While they note that their findings varied 
widely among sub-watersheds, they conclude that 
increasing wetland coverage between 20 and 150% is 
needed to combat climate change impacts. Bortolotti 
et al. (2016) found that within a decade following 
restoration, water chemistry, macroinvertebrate and 
submersed aquatic vegetation communities closely 
resembled nearby natural wetlands in Southern 
Saskatchewan but note that protecting existing intact 
wetlands would be a better strategy. Similarly, Goyette 
et al. (2023) state that the ‘no-net-loss’ policy is not 

sufficient, and to maintain current hydrological cycles, 
a ‘net gain’ is needed.

Mining and peatland reclamation
Unlike wetland restoration, which seeks to return ori
ginal functions to a degraded system, reclamation 
involves the creation of a completely designed and 
constructed landscape that nevertheless must account 
for landscape features and climate, that ideally achieve 
a suite of natural wetland functions common to the 
targeted wetland class (Daly et al. 2012). This is dis
tinct from ‘treatment wetlands’ that are designed to 
treat non-point source pollution or low-flow waste
water, which are less-common in Canada compared 
to USA because of challenges associated with cold- 
weather performance (Kennedy and Mayer 2002). 
Prior to 2010, there was a dearth of well-documented 
wetland reclamation in Canada, although Whitelaw 
et al. (1989) developed guidelines for swamp reclam
ation on abandoned farmland based on a critical ana
lysis of literature. They suggested that manipulating 
hydrology through removal or disabling of tile drains 
is preferable to engineered water-level control struc
tures. More recently, wetland reclamation in Canada 
has become a prominent discipline, primarily because 
of initiatives directed at achieving ‘equivalent land 
capability’ for wetland-dominated terrain (OSWWG 
2000) on post-mined oil sands landscapes.

Rooney et al. (2012) identified the loss of peatland 
from the Athabasca Oil Sands Region (AOSR) in 
Alberta, suggesting their reclamation is severely hin
dered by the altered topography of the post-mined 
landscape. While open water wetlands or marshes are 
easier to build (Alberta Environment 2008), their 
hydrological, biogeochemical and ecological function 
is entirely different than peatlands that comprised the 
pre-disturbance landscape (Rooney et al. 2012). 
Moreover, their natural occurrence in AOSR is only 
about 8% of wetland area (Ridge et al. 2021). Given 
that the majority of the AOSR is covered by peat
lands, predominantly groundwater-fed fens (Vitt et al. 
1996), these became the focus of reclamation research. 
The first conceptual design was proposed by Price 
et al. (2010), who used a numerical groundwater 
model to determine the optimal geometry and requis
ite material hydraulic properties of an upland to sus
tain fen hydrology under extreme drought conditions. 
This conceptual model demonstrated the theoretical 
viability of fen construction, resulting in a mandate to 
test the design on a pilot scale. The relatively simplis
tic design of Price et al. (2010) was adopted by 
Suncor Energy who completed the construction of 
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Nikanotee Fen Watershed (NFW) in January 2013, 
using salvaged and mine waste materials including 
peat and fine forest-floor soil stripped from areas des
ignated for expansion of the mine, and coarse tailings 
sand. Simultaneously, Syncrude Canada Ltd. built the 
Sandhill Fen Watershed (SFW), which attempted to 
mimic the complex synergistic water sharing between 
upland and peatland landforms as observed in the 
Utikuma Lake region � 250 km southwest of AOSR 
(e.g. Ferone and Devito 2004; Petrone et al. 2008; 
Smerdon et al. 2005). Ketcheson et al. (2016) provide 
a comparative overview of NFW and SFW and note 
that although replicating the complex landscape inter
action that inspired SFW should be a reclamation 
goal, the simplicity of NFW aided monitoring and 
modelling of fundamental hydrological processes, 
which was advantageous given the experimental 
nature of these watersheds. Ultimately, the desire is to 
develop the knowledge to allow for the consistent 
construction of carbon-accumulating ecosystems that 
are resilient to normal climatic stress, and support 
vegetation assemblages similar to the undisturbed 
boreal landscape.

The NFW relied on groundwater from an upland 
aquifer to support a high and stable water table in the 
downgradient fen. Due to this design, where water was 
shared in a largely unidirectional manner, the trajec
tory of the fen was intrinsically tied to the develop
ment of the upland and so could not be examined in 
isolation. Ketcheson et al. (2017) concluded that NFW 
design could sustain appropriately wet conditions in 
the fen despite lower than anticipated upland recharge 
in the early years post-construction. Upland recharge 
increased over a 4-year period following construction 
owing to weathering of the fine cover soil that overlies 
tailings sand (Sutton and Price 2020a, 2020b), one of 
several time-dependent processes that steered system 
development in the short-term. However, over the 
long-term, the recharge function of the upland was 
reduced by the growth of transpiring vegetation, 
although recharge was predicted to remain sufficient to 
drive fen function as the upland approaches a climax 
vegetation cover (Sutton and Price 2020a, 2020b). Fen 
evapotranspiration was only weakly tied to WTD 
(Scarlett et al. 2017), either because the water table was 
at or slightly above the surface, or because when drier, 
peat hydraulic properties retained water against drain
age to the water table (Scarlett and Price 2019), mak
ing it available for ET. At SFW, Nicholls et al. (2016) 
also showed that wet conditions in the fen limited ET 
variability and was the dominant flux when the dis
charge control structures were not being artificially 

manipulated. The more complex design, active water 
table management, and greater watershed relief of 
SFW led Biagi et al. (2021) to conclude that the condi
tions were not favourable for fen peatland development 
as marsh-like conditions prevailed in the lowland area 
that were not favourable for peat accumulation and 
water conservation.

Water availability is not the only challenge that 
wetland reclamation in the AOSR must contend with, 
because residual solute pools associated with tailings 
sand (Simhayov et al. 2017; Biagi and Carey 2022), 
used for constructing uplands introduces water qual
ity concerns. Kessel et al. (2018) estimated the arrival 
time of solutes (notably Naþ) to the fen was 4 to 
11 years, with the greatest flux in summer driven by 
fen ET. Kessel et al. (2021) noted the dilution of sal
inity in the upland aquifer and fen caused by 
enhanced recharge in upslope recharge basins that 
provided a disproportionate contribution to total 
upland recharge. Biagi et al. (2019) found fen salinity 
to be notably elevated by evapotranspiration, which in 
summer is greater than precipitation (Scarlett et al. 
2017), and has a particularly pronounced effect dir
ectly at the surface (Yang et al. 2022). Sutton and 
Price (2020a, 2020b) performed Monte Carlo simula
tions of future weather scenarios, which demonstrated 
the water balance of Nikanotee Fen generated suffi
cient flushing of salts to keep fen salinity below the 
stress-threshold of Carex aquatilis, currently the dom
inant plant species (Borkenhagen and Cooper 2019). 
Although future climate conditions introduced con
siderable uncertainty, the modelling indicated that fen 
salinity was likely to peak 20 years post-construction 
and decline thereafter. At SFW, the engineered con
trol structures designed to suppress salinity were 
effective when used (but compromised the wetland 
hydrology); after the initial year they were used min
imally, and electrical conductivity in the fen doubled 
in the following year, with enrichment being most 
profound at fen margins (Biagi et al. 2019).

Reclamation of upland landscapes can produce 
conditions suitable for the formation of unplanned 
‘opportunistic’ wetlands, with much of the area hav
ing a water table within 50 cm of the surface 
(Wytrykush et al. 2012) and occurring on as much as 
17% of a reclaimed upland (Hawkes et al. 2020). 
Little-Devito et al. (2019) found the hydrology suit
able for the establishment of woody, swamp vegeta
tion. The soil texture of uplands was found to 
influence the characteristics of these opportunistic 
wetlands. At sites with coarser deposits, groundwater 
discharge areas at the toe-slopes were common, 
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whereas on finer deposits, wetlands were more iso
lated with little input from adjacent areas (Little- 
Devito et al. 2019). While to differing degrees both 
peatland and wetland reclamation produce novel sys
tems (Nwaishi et al. 2015), it should be noted that 
thus far opportunistic wetlands lack many of the eco
hydrological functions associated with pre-disturbance 
peatlands. Yet these systems are still in their infancy, 
as wetland development is a slow process that occurs 
on timescales of millennia. Although projections of 
constructed wetland trajectory are largely optimistic 
(Sutton and Price 2022), ultimately only patience and 
diligent monitoring will reveal the true development 
of these ecosystems.

Peatland reclamation of ‘temporary’ features pre
sent in the AOSR, such as seismic lines created for 
geologic exploration is also ongoing. Although these 
features retain peatlands on the landscape, the 
removal of the forest cover and compression of soils 
(Davidson et al. 2020) alter wetland function and 
these disturbances are widespread, affecting at least 
1900 km2 of bogs, fens and swamps in the province of 
Alberta (Strack et al. 2019). Widespread landscape 
disturbance has been identified as a key driver of the 
decline in woodland caribou populations, a species at 
risk in Canada (Alberta Environment and Parks 
2017). Thus, actions to accelerate the recovery of seis
mic lines are being actively applied, particularly in 
peatland areas where trees are slow to regenerate (van 
Rensen et al. 2015). To date, reclamation actions are 
mainly applied to seismic lines crossing peatlands and 
largely involve silvicultural mounding treatments 
followed by tree planting (Dabros et al. 2018). 
Disturbance and inversion of the peat profile during 
these activities results in significant changes to soil 
hydrophysical properties, increasing bulk density and 
soil water retention (Davidson et al. 2020; Kleinke 
et al. 2022), with consequences for tree growth under 
investigation. However, testing of new mounding 
methods that retain the structure of the surface peat 
show promise for retaining hydrological function, 
peatland plant communities and accelerating the 
return of canopy cover (Kleinke et al. 2022).

vi) modelling: understanding processes and prediction
Canadian hydrologists have employed and developed 
increasingly sophisticated numerical models to iden
tify the crucial role wetlands have within the broader 
landscape, characterize important processes, and 
quantify sensitivity to disturbance. Studies have 
explored a range of spatial scales, from the large wet
land-dominated drainage basins of Canada down to a 

collection of individual pores. As computing power 
has become less of a limitation and recognition of the 
significance of peatlands permeates across disciplines, 
the breadth, depth, and number of modelling studies 
has, and will continue to be, on an upward trajectory.

A common theme in large-scale models of 
Canadian watersheds is the recognition of the essen
tial role that wetlands perform in regulating the pat
terns of streamflow, ultimately emphasizing that they 
cannot be ignored. In the Liard River watershed 
(277,100 km2), which originates in the Yukon, wet
land-dominated catchments required a separate model 
structure to represent the ‘fill-and-spill’ behaviour 
that promotes a characteristically flashy hydrograph 
response to snowmelt and high-magnitude precipita
tion events (Brown and Craig 2020). This was accom
plished by implicitly mimicking the surface detention 
capacity and marked decline in hydraulic conductivity 
with depth, which is typical of peat (Quinton et al. 
2008). Wright et al. (2009) demonstrated this process 
more explicitly at Scotty Creek, NWT (also within the 
Liard River watershed); however, in their model the 
detention storage that needed to be exceeded to pro
duce flow was located in subsurface depressions in 
the frost table. Peatlands also needed to be explicitly 
included in a model of the Athabasca River basin 
(95,300 km2) of Alberta to achieve adequate matches 
between the simulated and observed water balance 
due to their strong internal water conservation mech
anisms that increased downstream water availability 
through a reduction in evapotranspiration (Hwang 
et al. 2018). Similarly, the pronounced reduction in 
evapotranspiration during dry (low water table) con
ditions due to peatland self-regulation was a crucial 
feature to represent in a groundwater flow and solute 
transport model of a reclaimed fen watershed near 
Fort McMurray, Alberta (Sutton and Price 2022), and 
a comprehensive ecosystem dynamics model of an 
undisturbed moderate-rich fen near Lac La Biche, 
Alberta (Mezbahuddin et al. 2016).

Many of the first field-scale models of Canadian 
wetlands pursued a deeper understanding of the proc
esses that influence wetland development. Price and 
Woo (1990) developed an advective-dispersive solute 
transport model of a coastal salt marsh along James 
Bay, Ontario that demonstrated how freshwater 
recharge suppressed near-surface salt concentrations, 
likely contributing to shifts in botanical composition. 
Fraser et al. (2001b) performed diffusive modelling at 
Mer Bleue bog, ON, which indicated that diffusion 
alone could not replicate the observed geochemical 
profiles, rather, transient flow-reversals were found to 
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enhance the upward mobility of nutrients and ions. 
Groundwater flow modelling of two Newfoundland 
blanket bogs suggested that low peat hydraulic con
ductivity along the system margins contributed to bog 
development by impeding drainage, thereby enhanc
ing peat accumulation (Lapen et al. 2005). Research 
on Canadian wetlands has also contributed to the 
progression of modelling platforms specifically 
intended to simulate wetland development on the 
millennial scale in which they evolve. These include 
the DigiBog platform developed by Morris et al. 
(2012), which explicitly simulates litter accumulation, 
peat decomposition, and the subsequent impact of 
decomposition on hydraulic conductivity; the updated 
version, DigiBog_Boreal, which can account for snow 
processes and short growing seasons (Ramirez et al. 
2023); and the carbon balance approach of the 
Holocene Peat Model (Frolking et al. 2010).

Incorporating ecohydrological feedbacks into 
hydrological and earth system models has been par
ticularly important when considering the implications 
of projected climate change on the behaviour and 
resilience of wetlands (Frolking et al. 2009; Helbig 
et al. 2020b). Yet, given the uncertainties inherent in 
projected climate change and those introduced 
through spatial and temporal downscaling (Zhang 
et al. 2011), many studies that address the future of 
Canadian wetlands perform sensitivity analyses rather 
than selecting a single scenario. Bourgault et al. 
(2014) prescribed reduced recharge to a model of the 
Lanoraie peatland complex in Qu�ebec, which indi
cated a pronounced decline in peatland water tables 
and diminished contributions from the peatlands to 
downgradient rivers, resulting in markedly reduced 
base flow. Levison et al. (2013) applied a variety of 
recharge anomalies to a headwater aquifer and peat
land system in Southern Qu�ebec depending on the 
relative change in precipitation the peatland could 
receive greater groundwater inflow or become 
perched and disconnected from the aquifer – both of 
which imply the possibility of altered vegetation com
munities. In combination with a soil moisture dynam
ics model, Moore and Waddington (2015) modified 
the vascular water-stress formulation of Rodriguez- 
Iturbe and Porporato (2005) to sphagnum mosses to 
assess how peatlands may respond to climate change. 
This work indicated an increased frequency of moss 
desiccation under projected climate conditions, poten
tially instigating shifts in sphagnum community 
composition.

Given that the function and behaviour of wetland 
ecosystems is intimately tied to exchanges of moisture 

and energy in the unsaturated zone, many modelling 
studies have focused on the highly dynamic near- 
surface region. Kennedy and Price (2004) modified the 
FLOCR model to account for the multifaceted effects 
of compression in a cutover peatland near Sainte- 
Marguerite-Marie, Qu�ebec. Gauthier et al. (2018) 
performed unsaturated modelling of a variety of com
pressed moss profiles, indicating that artificial compres
sion of regenerated mosses could hasten the recovery 
of cutover peatlands. In nearby Shippagan, New 
Brunswick, Elliott and Price (2020) performed soil 
moisture modelling by implementing the widely used 
Richard’s equation at an experimental cutover peatland, 
which highlighted the often-considerable differences 
between estimates of soil hydraulic parameters based 
on modelled field behaviour and those estimated in the 
laboratory. Also using Richard’s equation, Kettridge 
et al. (2016), identified that sphagnum moss and peat 
properties tend towards maximizing water-use effi
ciency, meaning the hydrophysical properties of an 
Alberta peatland reflected the ideal balance between 
carbon accumulation and water storage. In certain sit
uations, however, the Richards equation may be inad
equate. Dimitrov et al. (2010) demonstrated at Mer 
Bleue bog, Ontario, that the inclusion of macropore 
flow was instrumental to adequately simulating the pat
terns of soil water movement.

Early wetland modelling of evapotranspiration 
began as a comparison of energy budgets with equi
librium estimates to demonstrate that the latent heat 
flux can be accurately determined by the Priestley and 
Taylor (1972) model (Stewart and Rouse 1976a, b; 
Roulet and Woo 1986b). This soon evolved to exam
ining how surface cover can influence climatological 
resistance and interactions with the local climate of 
wetland classes representative of the Boreal/Subarctic 
(Lafleur and Rouse 1988) and from temperate wooded 
swamps (Munro 1987). Significant advances to wet
land modelling capability began with the validation of 
the Canadian Land Surface Scheme (CLASS) for sev
eral wetland types, incorporating organic soil parame
ters (Letts et al. 2000), which resulted in 
improvements in turbulent flux estimates for the vas
cular plant-dominated fen and marsh wetlands 
(Comer et al. 2000). However, bogs remained a chal
lenge, as the dominance of non-vascular plant cover 
results in surface evaporation from soil, open water, 
and especially moss are the primary components of 
peatland ET (Malhotra et al. 2016). Consequently, 
surface resistance will largely be a function of surface 
characteristics, non-vascular plant cover notwithstand
ing. For example, variations in surface resistance were 
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found to be a result of diurnal wetting and drying of 
the near surface layer, impacting the daytime vari
ation of resistance to evaporation from the peat sur
face (Price 1991; Raddatz et al. 2009; Wessel & Rouse 
1994). Recently, further research has been conducted 
to address the explicit treatment of moss surface 
resistance in models and how this surface interacts, 
and feeds back with the vascular canopy (Waddington 
et al. 2015). Modelling studies suggest that evapor
ation from mosses, which decreases with increasing 
tree cover due to a reduction in radiation at the sur
face, counteracts the potential drying effects of 
increased tree transpiration (Kettridge et al. 2013). 
However, decreased light at the surface with increased 
tree cover can produce a shift in moss communities 
to more shade tolerant species (Van Huizen et al. 
2022), but the strength and ultimate direction of this 
potential feedback remains unclear (Waddington et al. 
2015).

Overall, wetland hydrological modelling to date has 
provided a critical test of the state of our understand
ing Canadian wetland function and development of 
testable hypotheses. Ongoing improvement in the 
representation of processed-based knowledge of 
Canadian wetland hydrology within numerical models 
will assist future decision-making about these ecosys
tems in response to disturbances such as climate and 
land-use change.

vii) Indigenous knowledge
Indigenous groups in Canada often describe their lan
guage as having ‘come from the land’. It is therefore 
not surprising that Indigenous languages across 
Canada have an extraordinarily rich vocabulary of 
words defining and describing the biophysical attrib
utes of the natural environment. Historically, there 
has been very little synergy between university-based 
wetland researchers and Indigenous knowledge hold
ers, and for this reason, very few Indigenous words 
have entered the scientific nomenclature. A noteworthy 
exception is the word ‘muskeg’, which has roots in the 
Cree and Ojibwa languages, and although it lacks pre
cise scientific definition, is often used generally to mean 
organic terrain, including peatlands as defined in the 
present paper. Recent challenges arising from climate 
warming have catalysed new collaborations between 
researchers and Indigenous communities that focus on 
the sharing of knowledge and experiences on subjects 
of common concern. Indigenous knowledge provides 
valuable insights into how wetland environments are 
affected by climate change, and how Indigenous uses of 
wetlands have adapted as a result. Examples include 

documented changes to travel routes attributed to geo
morphic changes in the wetland-dominated coastal 
landscapes of Hudson Bay (Lemelin et al. 2010); and 
the wetting of perched basins in the wetland landscapes 
of the Peace-Athabasca Delta caused by ice-jams 
(Beltaos 2023). Indigenous knowledge also helps to dir
ect and validate scientific investigations. This process 
often termed ‘two-eyed seeing’ (Bartlett et al. 2012) 
fuses Indigenous and scientific knowledge (Quinton 
et al. 2022) and produces outcomes and solutions that 
can be more confidently applied by community deci
sion makers (Woo et al. 2009). Scientific and 
Indigenous knowledges draw on observations made 
over vastly different time scales, and for that reason, 
the two knowledge types are complementary. The 
notion that journal articles published more than 
10 years ago are old, or that the 75-year period consid
ered in this paper includes most or all wetland know
ledge, contrasts sharply with the reverence that 
Indigenous communities hold for the knowledge passed 
down to them by their elders. Like their language, the 
knowledge that developed with it is not seen as old but 
as ‘enduring’. The success of such fusions continues to 
inspire further collaborations. For example, the 
Mushkegowuk Council, representing Cree First Nations 
in the Hudson and James Bay Lowlands recently hosted 
a conference to identify wetland knowledge gaps, and 
to highlight research priorities to help resource manag
ers and policy makers make better decisions in the 
Mushkegowuk Territory (Middleton 2017). Similar 
meetings have been organised by Indigenous commu
nity leaders in Dene traditional lands of the Northwest 
Territories (Quinton et al. 2022).

Conclusion

In this summary of 75 years of Canadian wetland 
hydrology research, the breadth of studies reported 
herein attests to the large, vibrant, and productive 
community of Canadian wetland science. Canadian 
wetlands have enormous ecological value, with boreal 
wetlands alone estimated to provide $435.6 billion 
annually for ecosystem services including carbon stor
age, flood control, and water quality improvement 
(Anielski and Wilson 2009). However, Canadian wet
lands are undergoing extraordinary transformative 
change that has implications for ecosystem function, 
ecological integrity, and source water protection. 
Natural resource development, which is important to 
Canada’s national economy, is expanding at the same 
time as an intensification in climate change driven 
natural disasters such as wildfire, flood and drought. 
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Research needs to continue to investigate how these 
disturbances interact to fully describe the threats fac
ing Canadian wetlands and the regional and global 
ecosystem services they provide.

Evaluating changes necessitates a good understand
ing of wetland functions against which change can be 
assessed. This review demonstrates that for many 
functions in undisturbed wetlands, such as water table 
behaviour, runoff response, evapotranspiration proc
esses, groundwater interactions, vadose zone hydrol
ogy, freeze-thaw processes and carbon sequestration 
and decomposition mechanisms there is a rich base of 
knowledge and established methodologies. However, 
as with most empirical field-based research there 
remains a need to build the database of spatial and 
temporal character and variability. There are other 
aspects of wetland hydrological function that remain 
inadequately understood, such as nutrient regimes 
and processes, solute and non-aqueous phase liquid 
transport behaviour in peatlands, and ecohydrological 
feedbacks, thresholds, and resilience. Identifying and 
characterizing feedbacks within and among most of 
these processes is an ongoing challenge, even in pris
tine systems. The challenge is compounded in systems 
encountering multiple disturbances. While the numer
ous publications cited here and elsewhere strive to 
provide a simple interpretation of hydrological inter
actions in wetlands, this belies the inherent complex
ity of these systems which we must continue to work 
to understand and document. Further, predicting the 
response of a wetland to disturbance, requires an 
understanding of its hydrologic context. That is, the 
response of a wetland will often be a unique function 
of wetland class/form/type, external drivers such as 
weather, and internal changes to vegetation and soil 
hydrophysical properties that will modify the response 
to water inputs, losses and stores. Documentation of 
the response to change in specific contexts will 
remain valuable, but wetland hydrologists also need 
to develop indicators of change and action thresholds 
to trigger intervention, and build hydrological insight 
to anticipate and minimize adverse outcomes before 
they happen.

The Canadian wetland hydrology research we have 
summarized here highlights Canada’s leadership in 
the globally-relevant domains of wetland protection, 
conservation, reclamation and restoration. Our sum
mary has demonstrated that Canadian research has 
made major advances in all aspects of wetland hydrol
ogy, and in particular, identifying disturbance impacts 
and developing strategies to restore wetlands follow
ing land-use change. Given that Canada contains at 

least a fifth of the world’s wetlands, and the world’s 
second largest peatland complex, it is essential that 
wetland hydrology, and the processes it drives, remain 
a priority of government, industry, academia and 
practitioners. Accomplishing this will not only require 
wetland scientists to continue the bold, compelling 
work of the past 75 years, but invest in cross- 
disciplinary collaboration, effective scientific commu
nication, and partnership with land-managers, local 
communities, and Indigenous organizations.
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