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Abstract
Climate change is a threat to the 500Gt carbon stored in northern peatlands. As the regionwarms, the
rise inmean temperature ismore pronounced during the non-growing season (NGS, i.e., winter and
parts of the shoulder seasons)when net ecosystem loss of carbon dioxide (CO2) occurs.Many studies
have investigated the impacts of climatewarming onNGSCO2 emissions, yet there is a lack of
consistency amongst researchers in how theNGS period is defined. This complicates the
interpretation ofNGSCO2 emissions and hinders our understanding of seasonal drivers of important
terrestrial carbon exchange processes. Here, we analyze the impact of alternative definitions of the
NGS for a peatland site withmultiple years of CO2flux records. Three climatic parameters were
considered to define theNGS: air temperature, soil temperature, and snow cover. Our findings reveal
positive correlations between estimates of the cumulative non-growing season net ecosystemCO2

exchange (NGS-NEE) and the length of theNGS for each alternative definition, with the greatest
proportion of variability explained using snow cover (R2=0.89, p<0.001), followed by air
temperature (R2=0.79, p<0.001) and soil temperature (R2=0.54, p=0.006). Using these
correlations, we estimate average dailyNGSCO2 emitted between 1.42 and 1.90 gCO2m

−2, depending
onwhichNGS definition is used. Our results highlight the need to explicitly define theNGS based on
available climatic parameters to account for regional climate and ecosystem variability.

1. Introduction

The current rate of warming in northern boreal peatlands (� 45°N) is without precedent in the historical record
and happens primarily during the non-growing season (NGS). This has repercussions for net ecosystem-scale
carbon fluxes considering the uncertainties in carbon offsets from growing season primary productivity [1–4]. A
growing body of literature has emerged alluding to substantial increases in soil carbon dioxide (CO2) and
methane (CH4) emissions during theNGS [5–17]. Despite thesefindings, there is a lack of consistency in how the
NGS is defined, with the start and end dates of theNGS in a calendar year assigned differently among
studies [18].

Defining the growing and non-growing seasons is closely related to plant phenological events. For example,
spring leaf unfolding and fall leaf coloring can signal the start and end of the period of photosynthetic CO2

uptake, respectively and be used to define growing season in ecosystems dominatedwith deciduous plant species
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[19]. The timing of these events correlates with interannual variations of local climatic factors aswell as broader
climate warming [20–22]. Globally, growing seasons are increasing in length [2, 18], which influences the
ecosystem carbon balance through changes in gross primary productivity (GPP). Annual GPP is typically larger
where the growing season is longer, while the longer exposure of plants tofluctuatingweather conditions can
lead to low rates of GPP in the latewinter and early spring [2, 23–25].

Net carbon exchange between the atmosphere and boreal peatlands has been observed to be strongly
seasonal, shifting from growing season biomass CO2 uptake toNGS induced soil carbon release [13, 14, 26].
Recent synthesis studies have compiled site-level carbon fluxmeasurements but have not defined theNGS in a
systematicmanner. For example, in their compilation of CH4 emissions, Treat et al [12] used theNGS definition
from the original studies or otherwise fixedNGS start and end dates (mid-September throughMay between 60°
Nand 90°N, andNovember throughMarch between 40°Nand 60°N). Natali et al [13] considered the period
betweenOctober toApril, regardless of site location, when extractingwinter soil CO2flux data.More recently,
Virkkala et al [26] reported significantly different estimates for the total NGS carbon fluxes compared toNatali
et al [13], despitematching time periods and regions. Therefore, there is a need for clear and consistent
definitions of theNGS that accurately capture local ecosystem and climatic factors.

When recorded continuously, net ecosystemCO2 exchange (NEE) data can provide a straightforward
indicator to separate the growing and non-growing states of the ecosystem: positiveNEE indicates net CO2

release and therefore represents an overall non-growing (heterotrophic) state, negativeNEE implies net CO2

fixation and biomass accumulation [9, 10, 18, 20, 24].Most on-site carbon fluxes have beenmeasured using flux
chambers or eddy covariance (EC) towers. The vastmajority of existing data cover only the summermonths
because of the cold temperatures and logistical difficulties during thewinter, but also because at high latitudes
winterflux rates tend to be a fraction of those in the summermonths [5, 9, 27]. However, growing empirical
evidence points to substantial accumulated ecosystem carbon release in fall, winter, and spring seasons [5–15,
26]. Hence, there is increasing research focus onmeasuring on-site CO2 emissions during theNGS
period [14, 26].

Mer Bleue bog nearOttawa, Canada is a long-termpeatland ECfluxmonitoring site withCO2,momentum,
radiative, and energyfluxesmeasured since 1998. This site has been reported to have a large inter-annual
variation in the fall seasonNEE [28]. In addition, our new compilation overmore years of data (1998–2010)
showswide ranges of dailyNEE rates duringOctober andApril, that is, near the beginning and end of theNGS
(figure 1). This variability in dailyNEE is at least in part due to interannual shifts in the start and end of theNGS
[17]. As leafing events or greenness changes are not easy tomonitor in the usually evergreen dominated or open
vegetation of northern peatlands, climatic variablesmay be ofmore practical use to identify the ecological season
transitions and reversals of theNEEdirection (i.e., net heterotrophy or net autotrophy) [20–23].

In this study, we use climate-related parameters to define the start and end dates of theNGS for theMer
Bleue Bog. To identify key environmental drivers and predict future changes in theNGS-NEECO2 emission
rates, Rafat et al [15] extracted ECdata for the annualNGS periods based on the snow cover records for this site.
Here, we expand on this analysis by determining how variable definitions of theNGS affect the cumulativeNEE
estimates for theNGS.Using a 12-year record (1998–2010) of data, we delineate theNGS period based on
thresholds in snow cover, air temperature, and soil temperature.

2.Data analysis

Gap-filled estimates ofNEEfluxes, soil temperaturesmeasured at 20 cmbelow hummock surface, snow depths,
and air temperatures at theMer Bleue site were obtained from the Fluxnet CanadaResearchNetwork via the
OakRidgeNational Laboratory’sDistributed Active Archive Center for Biogeochemical Dynamics (ORNL
DAAC) FlUXNETCANADATEAM. 2016 [8]. TheMer Bleue research site is a domed ombrotrophic bog
locatedwithin a larger 2800-hectare wetland complex nearOttawa, Canada [15]. Site vegetation consists of
Sphagnummosses and overstory of ericaceous shrubs. Additional site details, including details of the eddy
covariance tower andflux processingmethods, can be found inRafat et al [15].

The following alternativeNGS definitionswere used. (1) For the air temperature definition, the start of the
NGSwas set as the first day of three consecutive days for which smoothed air temperatures over a 7-day sliding
window fell below 1 °C,while the end coincidedwith the first day of three consecutive days with temperature
rising above 1 °C. (2) For the snow cover definition, the presence and absence for three consecutive days of
accumulated snow on the ground signaled the beginning and end of theNGS. (3) For the soil temperature
definitions, three alternative threshold temperatures were considered to set the start and end dates of theNGS: 1,
2 and 5 °C.The start of the correspondingNGSwas defined as thefirst day forwhich 7-day smoothed soil
temperatures remained below 1, 2, or 5 °C respectively. The end of theNGSwas determined as thefirst daywhen
the 7-day smoothed soil temperatures exceeded 1, 2, and 5 °C, respectively. For each yearwithin the 12-year
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record, only dailyNEEfluxeswithin the specifiedNGS periodwere considered.We refer to these dailyNEE
fluxes asNGS-NEE. CumulativeNGS-NEE valueswere then calculated for each year, with these sums
representing the total CO2 released or sequestered during the correspondingNGS period.

3. Results and discussion

CumulativeNGS-NEE values fluctuated significantly fromyear to year, with the length of theNGS varying by
days toweeks between the different definitions.While we expected that the cumulativeNGS-NEE valueswould
vary depending on the length of the (definition-dependent)NGS, the exact relationships betweenNGSduration
and cumulativeNGS-NEEwere unknown. For a given year, longerNGSs capture shoulder seasonswhich can
exhibit largefluctuations between positive and negativeNEE values, therefore complicating the relationship
betweenNGS duration andNGS-NEE.No clear increasing or decreasing trendwith timewas observed
(figure 2).Within the same year, the differentNGS definitions resulted in variable cumulativeNGS-NEE
estimates. In general, the soil temperature threshold of 1 °Cyielded larger cumulativeNGS-NEEwith longer
durations of theNGS. For example, in 1999–2000 and 2003–2004 theNGS started earlier and ended later than
when the air temperature and snow cover definitionswere applied (figure 2). Similarly, theNGS end date
according to the 1 °C soil temperature thresholdwasmarkedly late in the years 2006–2007, 2008–2009, and
2009–2010, which for 2006–2007 and 2008–2009 also resulted in relatively large cumulativeNGS-NEE but less
so for 2009–2010. In contrast, the early start of theNGS in 2002–2003was delayed by half amonthwhen soil
temperature rather than air temperature was used to define theNGS. Thus, the results shownot only that
applying different climate variables to define theNGS can produce significant differences in cumulativeNGS-
NEE estimates, but also that imposingfixed start and end dates (e.g., fromNovember toMarch as in [12])would
not capture the important inter-annual variability in theNGS period at theMer Bleue site.

As expected, therewas a general positive correlation between the cumulativeNGS-NEE and theNGS length
(figure 3). The greatest proportion of variability in cumulativeNGS-NEEwas explained by the length of theNGS
for the snow cover definition (R2=0.89), followed by the air temperature below 1 °C (R2=0.79, p<0.001),
soil temperature below 2 °C (R2=0.54, p=0.006), and soil temperature below 1°C (R2=0.50, p=0.01).

Figure 1.Boxplots of daily net ecosystem exchange (NEE) rates of CO2 grouped bymonth atMer Bleue Bog. DailyNEEwere estimated
from a 12-year record (1998–2010) of eddy covariancemeasurements of CO2 extracted for the non-growing season by Rafat et al [15].
Boxes extend from thefirst to the third quartile with the interior horizontal line corresponding to themedian. Vertical lines extend to
the 1.5 times interquartile range of each box.
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Figure 2. Inter-annual variability of cumulative non-growing season net ecosystem exchanges (NGS-NEE) (left panel). Estimates of
NGS-NEEwere obtained by defining the non-growing season (NGS) based on three distinct environmental variables, each
represented by a unique colour. The right panel displays the differences inNGS duration and timing according to how theNGS is
defined. According to a one-wayANOVA test, the difference inNGSdurations between the three definitions are statistically significant
(F(2,33)=4.085, p=0.026), likely associatedwith the significant difference in theNGS end date (F(2,33)=8.13, p=0.001).

Figure 3.Non-growing season (NGS) length and cumulative non-growing season net ecosystem exchanges (NGS-NEE) obtained
using the different NGSdefinitions given in the text, as well as their corresponding linear regression fits.
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The linear regression for soil temperature below 5 °Cwas not statistically significant (R2<0.01, p=0.88). The
slopes of the linear regressions provide estimates of the average dailyNGS-NEE flux at theMer Bleue site.We
refer to these values as theNon-growing Season Emissions Factors (NGS-EF). Based on the available 12-year
dataset, theNGS-EF ranged from1.42 to 1.90 gCO2m

−2 per day depending on theNGS definition.
TheNGS-EF for themeteorological winter (December, January, and February)was 1.48±0.33 gCO2m

−2

per day (mean±standard deviation,N=1,083 by aggregating all years), similar to theNGS-EF estimatedwith
theNGS definition based on soil temperature below 1 °C (1.42 gCO2m

−2 per day). Table 1 summarizes
calculatedNGS-EFs alongwith their linear regressionsfits (R2) and statistical significance (p-values). Despite
yielding the lowestNGS-EF, the soil temperature below 1 °Cdefinition predicted the highest cumulativeNGS-
NEE inmost years between 1998 and 2010, because it generally also produced the longestNGS durations
(figure 2). The interplay between theNGS duration andNGS-EF highlights the importance of consistencywhen
applyingNGS definitions. In particular, we caution against applyingNGS-EF estimates derived from a dataset
based on one definition toNGS durations based on another definition given the strong relationship between
cumulativeNGS-NEE andNGS length.

The snow cover and air temperature below 1 °Cdefinitions resulted in the strongest linear correlations
between cumulativeNGS-NEE and the duration of theNGS; they also span thewidest ranges of both variables
(figure 3). By contrast, NGS defined using soil temperatures of 1 and 2 °Cproduced smaller ranges of cumulative
NGS-NEE andNGS length. The below 2 °C soil temperatureNGS definition further yielded lower cumulative
NGS-NEE values for the sameNGS length than the snow cover and air temperature-based definitions. Likely,
this result can be attributed to longerNGSs defined by soil temperature below 2 °C,which extend into April and
capture large dailyNEEfluctuationswith possibly negative values (figure 1). Consequently, the regression curve
(figure 3)was translated towards longerNGS lengths resulting in lower cumulativeNGS-NEE in comparison to
cumulativeNGS-NEE obtained from the snow cover and air temperature definitions for different years but same
length ofNGS.When theNGSwas defined by soil temperature below 5 °C, the estimatedNGSperiod increased
but a clear positive trendwith the cumulativeNGS-NEEwas no longer observed (figure 3). In addition, for
comparableNGS lengths, considerable variability was observed in the cumulativeNGS-NEE estimates. The
longer theNGS, themore it extends into shoulder seasonmonths increasing variability inNEE, ultimately
reachingOctober andApril for which the dailyNEE fluxes oscillate between positive and negative values
(figure 1).

Our results support definingNGS based on readily available climatic parameters that account for the
interannual variability of regional climate and ecosystem response. For theMer Bleue bog, the snow cover
appears to provide a robustmetric to estimate the cumulativeNGS-NEE from the variable length of theNGS.
The snowdepth and coverage influence both surface and subsurface processes. Snow cover insulates the soil and,
hence, protects it against extreme temperature fluctuations during thewinter, while patchy snowmelt can
expose Sphagnummosses to light, hence, contributing to early spring photosynthesis [16, 29]. If sufficient snow
cover phenology information is not available, using an air or soil temperature threshold of 1°Cmay be the next
best choice toflexibly delineate theNGS.

Allowing the start and end dates of theNGS to vary fromyear to year naturally implies a coincident
adjustment of the growing season length. Further work should assess howdifferent definitions of theNGS
impact the trends between the length and cumulativeNEE of the growing season [18, 23]. An informed selection
of the duration of theNGS is important for quantifying the impacts of changes in the length of growing and non-
growing seasons on carbon budgets and interpreting the environmental drivers regulating the seasonality of
ecosystem functions [20, 25], including potential legacy effects of the growing season on soil carbon cycling
during theNGS [4, 30]. In northern environments, both the growing and non-growing seasons incorporate
some portion of the spring and fall transition periodswhen plant photosynthesis is sporadic andNEE fluxes
change direction as a result of, for example, freeze and thaw cycles, blowing snow, and snowmelt water
pulses [14].

Table 1. Summary of the linear regression analysis results according to theNGSdefinition.

NGSDefinition Non-Growing Season Emissions Factor (NGS-EF) [gCO2m
−2 day−1] Regression Fit (R2) Pr(>|t|)a

Air temperatures below 1 °C 1.63*** 0.792 <0.001

Soil temperatures below 5 °C 0.114 <0.01 0.883

Soil temperatures below 2 °C 1.81** 0.543 0.006

Soil temperatures below 1 °C 1.42* 0.496 0.011

Snow cover 1.90*** 0.890 <0.001

a Probability of observing values greater than or equal to t-value.
*p<0.05, ** p<0.01, *** p<0.001.
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Rafat et al [15] projected futureNGS-NEE rate increases under various radiative forcing scenarios (RCPs).
To assess the impact on the cumulativeNGS-NEE, these rate increasesmust be combinedwith projected
changes in theNGS length. Because the rate increases remain fairly small until 2050 [15], it is conceivable that in
the next few decades the cumulativeNGS-NEEwill not substantially increase, or even decrease if theNGS period
continues to follow the same decreasing trend as over the last decade.However, the near doubling of theNGS-
NEE rate in 2100 projected under RCP8.5 [15]points to the potential for an upward shift ofNGS-EFs (i.e.,
steeper slopes infigure 3) outpacing the shortening of theNGS duration. An increase inNGSCO2 emissions
during the second half of the centurymay in turn be compensated by higher warming-induced primary
production, as well as adaptive shifts in phenology (e.g., sensitivity to photoperiod) that allow vegetation to take
advantage of the lengthening of the potential growing period [31]. Further researchwill be needed to fully
unravel the impacts of variable growing and non-growing season lengths on theNEEof northern peatlands.
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